已知過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若以為直徑的圓經(jīng)過(guò)原點(diǎn),求直線的方程;
(2)若線段的中垂線交軸于點(diǎn),求面積的取值范圍.
解:(1)(2) 。
【解析】
試題分析:
思路分析:(1)通過(guò)分析已知條件,確定直線的斜率存在,故可設(shè)直線方程為,通過(guò)聯(lián)立方程組 ,消去,應(yīng)用韋達(dá)定理及,建立k的方程,求解。
(2)通過(guò)設(shè)線段的中點(diǎn)坐標(biāo)為
確定線段的中垂線方程為,
將用k表示, ,
利用二次函數(shù)的圖象和性質(zhì),得到,進(jìn)一步確定三角形面積的最值。
解:(1)依題意可得直線的斜率存在,設(shè)為,
則直線方程為 1分
聯(lián)立方程 ,消去,并整理得 2分
則由,得
設(shè),則 4分
5分
以為直徑的圓經(jīng)過(guò)原點(diǎn)
,解得 6分
直線的方程為,即 7分
(2)設(shè)線段的中點(diǎn)坐標(biāo)為
由(1)得 8分
線段的中垂線方程為 9分
令,得 11分
又由(1)知,且 或
, 13分
面積的取值范圍為 14分
考點(diǎn):直線方程,直線與拋物線的位置關(guān)系。
點(diǎn)評(píng):中檔題,確定拋物線的標(biāo)準(zhǔn)方程,一般利用“待定系數(shù)法”,涉及直線與拋物線的位置關(guān)系,往往通過(guò)聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考文科數(shù)學(xué) 題型:填空題
22.(本題滿(mǎn)分15分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過(guò)拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分18分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過(guò)拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;
(Ⅲ)過(guò)A、B分別作拋物C的切線且交于點(diǎn)M,求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山東省月考題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分15分)
已知拋物線G的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)P(m,4)到其準(zhǔn)線的距離等于5。
(I)求拋物線G的方程;
(II)如圖,過(guò)拋物線G的焦點(diǎn)的直線依次與拋物線G及圓交于A、C、D、B四點(diǎn),試證明為定值;
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com