長方體ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,則從A點(diǎn)沿表面到C1點(diǎn)的最短距離為
3
2
3
2
分析:根據(jù)題意,畫出三種展開的圖形,求出A、C1兩點(diǎn)間的距離,比較大小,從而找出最小值即為所求.
解答:解:長方體ABCD-A1B1C1D1的表面可如下圖三種方法展開后,A、C1兩點(diǎn)間的距離分別為:
(1+2)2+32
=3
2
,
(3+1)2+22
=2
5
,
(3+2)2+12
=
26

三者比較得3
2
是從點(diǎn)A沿表面到C1的最短距離,
∴最短距離是3
2

故答案為:3
2
點(diǎn)評:本題考查棱柱的結(jié)構(gòu)特征,考查分類討論思想,考查計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在長方體ABCD-A1B1C1D1中,AB=BC=2,過A1、C1、B三點(diǎn)的平面截去長方體的一個(gè)角后,得到如圖所示的幾何體ABCD-A1C1D1,且這個(gè)幾何體的體積為10.
(1)求棱A1A的長;
(2)求點(diǎn)D到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,長方體ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中點(diǎn),N是B1C1中點(diǎn).
(1)求證:A1、M、C、N四點(diǎn)共面;
(2)求證:BD1⊥MCNA1
(3)求證:平面A1MNC⊥平面A1BD1;
(4)求A1B與平面A1MCN所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 則三棱錐A1-ABC的體積為( 。
A、10B、20C、30D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知多面體ABCD-A1B1C1D1,它是由一個(gè)長方體ABCD-A'B'C'D'切割而成,這個(gè)長方體的高為b,底面是邊長為a的正方形,其中頂點(diǎn)A1,B1,C1,D1均為原長方體上底面A'B'C'D'各邊的中點(diǎn).
(1)若多面體面對角線AC,BD交于點(diǎn)O,E為線段AA1的中點(diǎn),求證:OE∥平面A1C1C;
(2)若a=4,b=2,求該多面體的體積;
(3)當(dāng)a,b滿足什么條件時(shí)AD1⊥DB1,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn).
(1)求證:A1E⊥平面ADE;
(2)求三棱錐A1-ADE的體積.

查看答案和解析>>

同步練習(xí)冊答案