已知斜三棱ABC-A1B1C1,AC=BC=2,A1在底面ABC上的射影恰為AC的中點D,又知

(1)求證:AC1⊥平面A1BC;

(2)求CC1到平面A1AB的距離;

(3)求二面角A-A1B-C的大。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1的側面BB1C1C是邊長為2的菱形,∠B1BC=60°,側面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C為30°.
(1)求證:AC⊥平面BB1C1C;
(2)求AB1與平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(甲)如圖,已知斜三棱柱ABC-A1B1C1的側面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求側棱A1A與底面ABC所成的角的大;
(2)求側面A1B與底面所成二面角的大小;
(3)求點C到側面A1B的距離.
(乙)在棱長為a的正方體OABC-O'A'B'C'中,E,F(xiàn)分別是棱AB,BC上的動點,且AE=BF.
(1)求證:A'F⊥C'E;
(2)當三棱錐B'-BEF的體積取得最大值時,求二面角B'-EF-B的大。ńY果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,點D為AC的中點,A1D⊥平面ABC,A1B⊥ACl
(I)求證:AC1⊥AlC; 
(Ⅱ)求二面角A-A1B-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:廣西南寧二中2011屆高三5月月考數(shù)學文綜試題 題型:044

已知斜三棱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點D,又知BA1⊥AC1

(1)求證:AC1⊥平面A1BC;

(2)求CC1到平面A1AB的距離;

(3)求二面角A-A1B-C的大小.

查看答案和解析>>

同步練習冊答案