分析:(1)通過a
n+a
n+1+(-1)
n+1a
n•a
n+1=0,移項后兩邊同除(-1)
n+1a
n•a
n+1,構(gòu)造新數(shù)列,然后求數(shù)列{a
n}的通項公式;
(2)利用
->0,
->0,構(gòu)造數(shù)列
-,通過數(shù)列求和,推出當(dāng)n>1時,
≤a
1+a
2+…+a
n<1;
(3)通過b
n=|a
1a
2…a
n|求出b
n表達(dá)式,化簡函數(shù)f
n(x)=1+b
1x+b
2x
2+…+b
nx
2n,n∈N
*,利用數(shù)學(xué)歸納法證明對任意的n∈N
*,函數(shù)f
n(x)無零點.證明n=k+1時,構(gòu)造函數(shù)g(x)通過圓的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,利用函數(shù)與方程的根說明方程沒有零點.
解答:解:(1)因為a
1=1,又因為a
n+a
n+1+(-1)
n+1a
n•a
n+1=0.a(chǎn)
n≠0,
且
- =-1所以
是以
=-1為首項.-1為公差的等差數(shù)列.
=-1-(n-1)=-n.
所以
an=.
(2)因為k∈N
* 時
->0,
->0,
所以
≤(1-) +(-) +…+ (-)< (1-) +(-) +…+ (-)+=
1-(-)-(-)-…-(-)<1
即
≤a
1+a
2+…+a
2k<a
1+a
2+…+a
2k+1<1
所以當(dāng)n>1時,
≤a
1+a
2+…+a
n<1.
(3)因為b
n=|a
1a
2…a
n|=
,所以f
n(x)=1+
x+
x
2+…+
x
2n,
①當(dāng)n=1時,函數(shù)f
1(x)=1+x+
=
(x+1)2+>0,所以函數(shù)無零點,結(jié)論成立.
②假設(shè)n=k時結(jié)論成立,即f
k(x)=1+
x+
x
2+…+
x
2k無零點.
因為x≥0時,f
k(x)>0.而f
k(x)的圖象是連續(xù)不斷的曲線,所以對任意x∈Rf
k(x)>0恒成立.
當(dāng)n=k+1時,因為f
k+1(x)=1+
x+
x
2+…+
x
2k+2,
f′
k+1(x)=1+
x+
x
2+…+
x
2k+1,
g
k(x)=1+
x+
x
2+…+
x
2k+1,
∴g′
k(x)=1+
x+
x
2+…+
x
2k=f
k(x)>0,
即g
k(x)是增函數(shù),
注意到x<-(2k+1)時
1+<0t=1,2,3,…2k+1,
所以g
k(x)=1+
x+
x
2+…+
x
2k+1
=(1+x)+
(1+)+
(1+)+…+
(1+)<0
當(dāng)x≥0時,g
k(x)>0而g
k(x)是增函數(shù),所以g
k(x)有且只有一個零點,記此零點為x
0且x
0≠0,
則當(dāng)x∈(-∞,x
0)時
g
k(x)<g
k(x
0)=0,即f′
k+1(x)<0,當(dāng)x∈(x
0,+∞)時
g
k(x)>g
k(x
0)=0,即f′
k+1(x)>0,f
k+1(x)在x∈(-∞,x
0)單調(diào)遞減,在x∈(x
0,+∞)單調(diào)遞增,
所以對任意的x∈R,f
k+1(x)>f
k+1(x
0)=g
k(x
0)+
=
>0,從而f
k+1(x)無零點,
即當(dāng)n=k+1時,結(jié)論成立.
根據(jù)①②,可知對任意的n∈N
*,函數(shù)f
n(x)無零點.
點評:本題難度比較大,不僅考查數(shù)列的通項公式的求法,裂項法證明不等式,數(shù)學(xué)歸納法的應(yīng)用,函數(shù)的零點的判斷方法,導(dǎo)數(shù)的應(yīng)用,考查計算能力,轉(zhuǎn)化思想等思想方法.