,且,記中的最大數(shù)為,則的最小值為    

 

【答案】

【解析】

試題分析:由題意,M=max{a,b},所以M≥a,M≥b,上述兩不等式相加得 2M≥(a+b),∵,∴,∴,∴,即的最小值為

考點:本題考查了基本不等式的運用

點評:當一個題目中同時出現(xiàn)多次使用基本不等式時,要注意等號成立的條件也成立

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在直角坐標平面上有一點列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點Pn在函數(shù)y=3x+
13
4
的圖象上,且Pn的橫坐標構成以-
5
2
為首項,-1為公差的等差數(shù)列{xn}.
(1)求點Pn的坐標;
(2)設拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,n2+1).記與拋物線Cn相切于點Dn的直線的斜率為kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn
;
(3)設S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•西城區(qū)一模)記實數(shù)x1,x2,…,xn中的最大數(shù)為max{x1,x2,…,xn},最小數(shù)為min{x1,x2,…,xn}.設△ABC的三邊邊長分別為a,b,c,且a≤b≤c,定義△ABC的傾斜度為t=max{
a
b
b
c
,
c
a
}•min{
a
b
b
c
,
c
a
}

(。┤簟鰽BC為等腰三角形,則t=
1
1
;
(ⅱ)設a=1,則t的取值范圍是
[1,
1+
5
2
)
[1,
1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設y,z>0,且a=
y
z
5-x
,b=
z
y
x+3
,記a,b中的最大數(shù)為M,則M的最小值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標平面上有一點列,對一切正整數(shù),點位于函數(shù)的圖象上,且的橫坐標構成以為首項,??為公差的等差數(shù)列

⑴求點的坐標;

⑵設拋物線列中的每一條的對稱軸都垂直于軸,第條拋物線的頂點為,且過點,記與拋物線相切于的直線的斜率為,求:

⑶設,等差數(shù)列的任一項,其中中的最大數(shù),,求的通項公式

查看答案和解析>>

同步練習冊答案