設(shè)P為橢圓(a>b>0)上一點(diǎn),F(xiàn)1、F2為焦點(diǎn),如果∠PF1F2=75°,∠PF2F1=15°,則橢圓的離心率為__________________.

 

解析:本題考查橢圓中焦點(diǎn)三角形的性質(zhì)及離心率的求法.設(shè)|PF1|=m,|PF2|=n,∵∠PF1F2=75°∠PF2F1=15°,∴∠F1PF2=90°,∴

tan15°=,∴m=(2-)n,代入方程組,得,


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的弦長(zhǎng)為1,過(guò)點(diǎn)M(3,0)的直線與橢圓C相交于兩點(diǎn)A,B,
(1)求橢圓的方程;
(2)設(shè)P為橢圓上一點(diǎn),且滿足
OA
+
OB
=t
OP
(O為坐標(biāo)原點(diǎn)),當(dāng)|
PA
-
PB
|<
3
時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•孝感模擬)設(shè)A,B分別為橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且x=為它的右準(zhǔn)線.
(1)求橢圓的方程;
(2)設(shè)P為橢圓上不同于A,的一個(gè)動(dòng)點(diǎn),直線PA,P與橢圓右準(zhǔn)線相交于M,兩點(diǎn),證明:MN為直徑的圓必過(guò)橢圓外的一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:022

(2006鄭州模擬)設(shè)P為橢圓(ab0)上一點(diǎn),為焦點(diǎn),如果,,則橢圓的離心率為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省偃師市高級(jí)中學(xué)2011-2012學(xué)年高二上學(xué)期第二次月考數(shù)學(xué)理科試題 題型:013

設(shè)P為橢圓(a>b>0)上一點(diǎn),F(xiàn)1、F2為焦點(diǎn),如果∠PF1F2=75°,∠PF2F1=15°,則橢圓的離心率為

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案