如圖,AC為圓O的直徑,AP⊥圓O,PA=AB=BC.
(1)證明:面PAB⊥面PBC;
(2)若M、N分別為線段PB、PC的中點,試求直線PC與平面AMN所成角的正弦值.
分析:(1)先利用線面垂直的判定定理證明直線BC⊥面PAB,再利用面面垂直的判定定理證明面PAB⊥面PBC,(2)先利用線面垂直的判定定理證明PB⊥面AMN,再利用線面所成的角的定義找到線面角的平面角,最后在直角三角形中計算此角即可
解答:解:(1)由題意,PA⊥面ABC,
∴PA⊥BC,又BC⊥AB,PA∩AB=A,
∴BC⊥面PAB
又BC?面PBC,
∴面PAB⊥面PBC
(2)∵BC⊥AB,BC⊥PA,AB∩PA=A
∴BC⊥平面PAB,又PB?平面PAB
∴BC⊥PB,又MN∥BC,∴MN⊥PB
在Rt△PAB中,PA=AB,M為中點,
∴AM⊥PB
∴AM∩MN=M,∴PB⊥面AMN
∴∠PNM即為所求角或其補角
設(shè)PA=2,則PB=2
2
,PM=
2
,AC=2
2
,PC=2
3
,PN=
3

∴sin∠PNM=
PM
PN
=
6
3
,即所求角的正弦值為
6
3
點評:本題綜合考查了線面垂直和面面垂直的判定定理,空間直線與平面所成的角的作法、證法、求法,轉(zhuǎn)化化歸的思想方法
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某城市設(shè)立以城中心O為圓心、r公里為半徑的圓形保護區(qū),從保護區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價為a萬元,通往高速公路的道路AB每公里造價是m2a萬元,其中a,r,m為常數(shù),設(shè)∠POA=θ,總造價為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當(dāng)m=
6
+
2
2
時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某城市設(shè)立以城中心O為圓心、r公里為半徑的圓形保護區(qū),從保護區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價為a萬元,通往高速公路的道路AB每公里造價是m2a萬元,其中a,r,m為常數(shù),設(shè)∠POA=θ,總造價為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當(dāng)數(shù)學(xué)公式時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷市沭陽縣高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某城市設(shè)立以城中心O為圓心、r公里為半徑的圓形保護區(qū),從保護區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價為a萬元,通往高速公路的道路AB每公里造價是m2a萬元,其中a,r,m為常數(shù),設(shè)∠POA=θ,總造價為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當(dāng)時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省寶雞中學(xué)2010屆高三適應(yīng)性訓(xùn)練(數(shù)學(xué)理) 題型:填空題

 A.(參數(shù)方程與極坐標(biāo))

直線與直線的夾角大小為         

 

B.(不等式選講)要使關(guān)于x的不等式在實數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點,CD過點E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案