【題目】1是直角梯形,,,.為折痕將折起,使點(diǎn)到達(dá)的位置,且,如圖2.

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)做輔助線,先根據(jù)線線垂直證明,進(jìn)而可證平面平面

2)建立平面直角坐標(biāo)系,求出平面的法向量,利用法向量法可求直線與平面所成角的正弦值.

1)證明:在圖1中,連結(jié),由已知得

∴四邊形為菱形,

連結(jié)于點(diǎn)

,

又∵在中,,

,

在圖2中,

,∴,

由題意知

,又平面,

∴平面平面

2)如圖,以為坐標(biāo)原點(diǎn),分別為軸,方向?yàn)?/span>軸正方向建立空間直角坐標(biāo)系.由已知得各點(diǎn)坐標(biāo)為

,

所以,,

設(shè)平面的法向量為,則,

所以,即,令,解得,

所以,

所以

記直線與平面所成角為,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)點(diǎn)P(3,2),且在兩坐標(biāo)軸上的截距相等的直線方程為(寫出一般式)___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于獨(dú)立性檢驗(yàn)的敘述

①常用等高條形圖表示列聯(lián)表數(shù)據(jù)的頻率特征;

②獨(dú)立性檢驗(yàn)依據(jù)小概率原理;

③獨(dú)立性檢驗(yàn)的結(jié)果是完全正確的;

④對(duì)分類變量的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,有關(guān)系的把握程度就越大.

其中敘述正確的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,是非空集合的兩個(gè)不同子集.

1)若,且的子集,求所有有序集合對(duì)的個(gè)數(shù);

2)若,且的子集,求所有有序集合對(duì)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,,,的中點(diǎn),的交點(diǎn).將沿折起到的位置,如圖

)證明:平面;

)若平面平面,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某屆奧運(yùn)會(huì)上,中國(guó)隊(duì)以261826銅的成績(jī)稱金牌榜第三、獎(jiǎng)牌榜第二,某校體育愛(ài)好者在高三年級(jí)一班至六班進(jìn)行了“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”的滿意度調(diào)查結(jié)果只有“滿意”和“不滿意”兩種,從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如表:

班號(hào)

一班

二班

三班

四班

五班

六班

頻數(shù)

5

9

11

9

7

9

滿意人數(shù)

4

7

8

5

6

6

(1)在高三年級(jí)全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)該生持滿意態(tài)度的概率;

(2)若從一班至二班的調(diào)查對(duì)象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對(duì)“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”不滿意的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形的直角梯形,BC,,為線段的中點(diǎn),平面,,為線段上一點(diǎn)(不與端點(diǎn)重合).

1)若,

(ⅰ)求證:PC平面;

(ⅱ)求平面與平面所成的銳二面角的余弦值;

2)否存在實(shí)數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知asinBbsinA).

1)求A;

2D是線段BC上的點(diǎn),若ADBD2,CD3,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證: ;

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案