已知分別以d1和d2為公差的等差數(shù)列{an}和{bn}滿足a1=18,b14=36.
(1)若d1=18,且存在正整數(shù)m,使得=bm+14-45,求證:d2>108;
(2)若ak=bk=0,且數(shù)列a1,a2,…,ak,bk+1,bk+2,…,b14的前n項和Sn滿足S14=2Sk,求數(shù)列{an}和{bn}的通項公式;
(3)在(2)的條件下,令cn=,dn=,問不等式cndn+1≤cn+dn是否對n∈N+恒成立?請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年江蘇省高考數(shù)學(xué)全真模擬試卷(3)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com