如圖所示,已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足,=0,點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點S(0,)且斜率為k的動直線l交曲線E于A、B兩點,在y軸上是否存在定點G,滿足使四邊形NAPB為矩形?若存在,求出G的坐標和四邊形NAPB面積的最大值;若不存在,說明理由.
解:(1)∵,=0,
∴NP為AM的垂直平分線,
∴|NA|=|NM|.
又∵|CN|+|NM|=2
∴|CN|+|AN|=2>2
∴動點N的軌跡是以點C(﹣1,0),A(1,0)為焦點的橢圓.
且橢圓長軸長為2a=2,焦距2c=2
∴a=,c=1,
∴b2=1
∴曲線E的方程為;
(2)動直線l的方程為:y=kx﹣與橢圓方程聯(lián)立,
消元可得(2k2+1)x2kx﹣=0
設(shè)A(x1,y1),B(x2,y2),
,
假設(shè)在y上存在定點G(0,m),滿足題設(shè),
=(x1,y1﹣m),=(x2,y2﹣m),
=x1x2+(y1﹣m)(y2﹣m)=
由假設(shè)得對于任意的k∈R,=0恒成立,
∴m2﹣1=0且9m2+m﹣15﹣0,解得m=1.
因此,在y軸上存在定點G,使得以AB為直徑的圓恒過這個點,點G的坐標為(0,1)
這時,點G到AB的距離d==
SGAPB=|AB|d==
設(shè)2k2+1=t,則,
得t∈[1,+∞),
所以SGAPB=,
當且僅當時,上式等號成立.
因此,四邊形NAPB面積的最大值是
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓C上一動點,點P在線段AM上,點N在線段CM上,且滿足
AM
=2
AP
,
NP
AM
=0
,點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足
FG
FH
,求λ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)如圖所示,已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足
AM
=2
AP
NP
AM
=0,點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點S(0,
1
3
)且斜率為k的動直線l交曲線E于A、B兩點,在y軸上是否存在定點G,滿足
GP
=
GA
+
GB
使四邊形NAPB為矩形?若存在,求出G的坐標和四邊形NAPB面積的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足AM=2AP,NP⊥AM,點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線l交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足FG=
1
2
FH
,求直線l的方程;
(3)設(shè)曲線E的左右焦點為F1,F(xiàn)2,過F1的直線交曲線于Q,S兩點,過F2的直線交曲線于R,T兩點,且QS⊥RT,垂足為W;
(ⅰ)設(shè)W(x0,y0),證明:
x
2
0
2
+
y
2
0
<1
;
(ⅱ)求四邊形QRST的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•石景山區(qū)一模)如圖所示,已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足
AM
=2
AP
,
NP
AM
=0
,點N的軌跡為曲線E.
(Ⅰ) 求曲線E的方程;
(Ⅱ) 若點B1(x1,y1),B2(-1,y2),B3(x3,y3)在曲線E上,線段B1B3的垂直平分線為直線l,且|B1A|,|B2A|,|B3A|成等差數(shù)列,求x1+x3的值,并證明直線l過定點;
(Ⅲ)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足
FG
FH
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足
AM
=2
AP
NP
AM
=0,點N的軌跡方程是(  )
A、
x2
2
+y2=1
B、
x2
2
-y2=1
C、x2+
y2
2
=1
D、x2-
y2
2
=1

查看答案和解析>>

同步練習冊答案