已知函數(shù)f(x)=
1,x>0
0,x=0
-1,x<0
,則函數(shù)g(x)=x2f(x-1)的值域是( 。
分析:f(x)=
1,x>0
0,x=0
-1,x<0
,當(dāng)x>1時,x-1>0,g(x)=x2f(x-1)=x2>1;當(dāng)x=1時,g(x)=x2f(x-1)=0;當(dāng)0<x<1時,g(x)=x2f(x-1)=-x2∈(-1,0);當(dāng)x<0時,g(x)=x2f(x-1)=-x2<0.由此能求出函數(shù)g(x)=x2f(x-1)的值域.
解答:解:∵f(x)=
1,x>0
0,x=0
-1,x<0

∴當(dāng)x>1時,x-1>0,f(x-1)=1,
g(x)=x2f(x-1)=x2>1;
當(dāng)x=1時,x-1=0,f(x-1)=0,
g(x)=x2f(x-1)=0;
當(dāng)0<x<1時,x-1<0,f(x-1)=-1,
g(x)=x2f(x-1)=-x2∈(-1,0);
當(dāng)x<0時,x-1<0,f(x-1)=-1,
g(x)=x2f(x-1)=-x2<0.
綜上所述,函數(shù)g(x)=x2f(x-1)的值域(-∞,0]∪(1,+∞).
故選C.
點(diǎn)評:本題考查函數(shù)的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答,注意分類討論思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案