【題目】某地方政府召開全面展開新舊動能轉(zhuǎn)換重大工程動員大會,動員各方力量,迅速全面展開新舊動能轉(zhuǎn)換重大工程.某企業(yè)響應號召,對現(xiàn)有設備進行改造,為了分析設備改造前后的效果,現(xiàn)從設備改造前、后生產(chǎn)的大量產(chǎn)品中各抽取了200件作為樣本,檢測一項質(zhì)量指標值.若該項質(zhì)量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.如圖所示的是設備改造前樣本的頻率分布直方圖.
(1)若設備改造后樣本的該項質(zhì)量指標值服從正態(tài)分布,求改造后樣本中不合格品的件數(shù);
(2)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量標值與設備改造有關.
0 | 設備改造前 | 設備改造后 | 合計 |
合格品件數(shù) | |||
不合格品件數(shù) | |||
合計 |
附參考公式和數(shù)據(jù):
若,則,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)10;(2)列聯(lián)表見解析,有99%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與設備改造有關.
【解析】
(1)設備改造后該項質(zhì)量指標服從正態(tài)分布,得,,然后,然后即可求出
(2)由設備改造前樣本的頻率分布直方圖,可知不合格頻數(shù)為,然后填表,再算出即可
解:(1)∵設備改造后該項質(zhì)量指標服從正態(tài)分布,
得,,
又∵,
∴設備改造后不合格的樣本數(shù)為.
(2)由設備改造前樣本的頻率分布直方圖,可知不合格頻數(shù)為
.
得2×2列聯(lián)表如下
設備改造前 | 設備改造后 | 合計 | |
合格品 | 160 | 190 | 350 |
不合格品 | 40 | 10 | 50 |
合計 | 200 | 200 | 400 |
,
∴有99%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與設備改造有關.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.
(1)證明:平面平面;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在研究吸煙與患肺癌的關系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患肺癌有關”的結(jié)論,并且在犯錯誤的概率不超過0.01的前提下認為這個結(jié)論是成立的,下列說法中正確的是( )
A.100個吸煙者中至少有99人患有肺癌
B.1個人吸煙,那么這個人有99%的概率患有肺癌
C.在100個吸煙者中一定有患肺癌的人
D.在100個吸煙者中可能一個患肺癌的人也沒有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關于原點對稱,則由方程所確定;則正確命題序號為( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環(huán)保關注者”與性別有關?
(2)若問卷得分不低于80分的人稱為“環(huán)保達人”.視頻率為概率.
①在我市所有“環(huán)保達人”中,隨機抽取3人,求抽取的3人中,既有男“環(huán)保達人”又有女“環(huán)保達人”的概率;
②為了鼓勵市民關注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足:對任意的n∈N*,都有an+1+Sn+1=1,又a1.
(1)求數(shù)列{an}的通項公式;
(2)令bn=log2an,求(n∈N*)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個結(jié)論:
①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;
②某學校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;
③線性相關系數(shù)越大,兩個變量的線性相關性越弱;反之,線性相關性越強;
④在回歸方程中,當解釋變量每增加一個單位時,預報變量增加0.5個單位.
其中正確的結(jié)論是( )
A. ①②B. ①④
C. ②③D. ②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面為矩形,AB=,BC=1,E,F分別是AB,PC的中點,DE⊥PA.
(1)求證:EF∥平面PAD;
(2)求證:平面PAC⊥平面PDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直三棱柱ABC — A1B1C1中,AB=AC,BB1=BC,點P,Q,R分別是棱BC,CC1,B1C1的中點.
(1)求證:A1R//平面APQ;
(2)求證:直線B1C⊥平面APQ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com