試題分析:首先根據題干條件解得f(0),f(-1)和f(-1)的值,然后根據對任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2)可以判斷f(0)、f(-1)和f(1)不能相等,據此解得答案解:∵對任何x∈R均有f(x3)=[f(x)]3,∴f(0)=(f(0))3,解得f(0)=0,1或-1, f(-1)=(f(-1))3,解得f(-1)=0,1或-1, f(1)=(f(1))3,解得f(1)=0,1或-1,∵對任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2),∴f(0)、f(-1)和f(1)的值只能是0、-1和1中的一個,∴f(0)+f(-1)+f(1)=0,故答案為0
點評:本題主要考查函數的值的知識點,解答本題的關鍵是根據題干條件判斷f(0)、f(-1)和f(1)不能相等,本題很容易出錯