若矩陣A有特征向量i=(
 10
)和j=(
 01
),且它們所對應(yīng)的特征值分別為λ1=2,λ2=-1.
(1)求矩陣A及其逆矩陣A-1;
(2)求逆矩陣A-1的特征值及特征向量;
(3)對任意向量α=(
 xy
),求((A-120α.
(1)設(shè)矩陣M=
ab
cd
,這里a,b,c,d∈R,
ab
cd
1 
0 
=2
1 
0 
,
ab
cd
0 
1 
=-
0 
1 
,解得a=2,b=0,c=0,d=-1
∴A=
20
0-1
,A-1=
1
2
0
0-1

(2)A-1特征多項式f(λ)=
λ-
1
2
0
0-1
=(λ-
1
2
)(λ+1)=0,得λ=
1
2
,或λ=-1,
當(dāng)λ=
1
2
時,對應(yīng)的特征向量為
1 
0 
;當(dāng)λ=-1時,對應(yīng)的特征向量為
0 
1 
;
(3)由α=x
1 
0 
+y
0 
1 

∴((A-120α=x
λ201
1 
0 
+y
λ202
0 
1 
=
x
220
 
y 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線C1與C2上所有點的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點且與C′2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若矩陣A有特征向量i=(
 
1
0
)和j=(
 
0
1
),且它們所對應(yīng)的特征值分別為λ1=2,λ2=-1.
(1)求矩陣A及其逆矩陣A-1
(2)求逆矩陣A-1的特征值及特征向量;
(3)對任意向量α=(
 
x
y
),求((A-120α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省福州三中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為
(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為為參數(shù)),C2的參數(shù)方程為為參數(shù))
(I)若將曲線C1與C2上所有點的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點且與C′2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷D(十二)(解析版) 題型:解答題

若矩陣A有特征向量i=()和j=(),且它們所對應(yīng)的特征值分別為λ1=2,λ2=-1.
(1)求矩陣A及其逆矩陣A-1;
(2)求逆矩陣A-1的特征值及特征向量;
(3)對任意向量α=(),求((A-120α.

查看答案和解析>>

同步練習(xí)冊答案