計算:(1)(lg2)2+lg2•lg50+lg25=
 

(2)log
2
2+log927+
1
4
log4
1
16
=
 

(3)
6
1
4
+
33
3
8
+
40.0625
+(
5π
)0-2-1
=
 

(4)125+(
1
2
)-2+343
1
3
-(
1
27
)-
1
3
=
 

(5)21+
1
2
log25
=
 
分析:(1)由lg50=2-lg2,原式可轉化為2(lg2+lg5),由此能求出其結果.
(2)log
2
2=2
log927=
3
2
,
1
4
log4
1
16
=-
1
2
,由此能導出原式的值.
(3)
6
1
4
=
5
2
33
3
8
=
3
2
,
40.0625
=
1
2
(
5π
)
0
=1,2-1=
1
2
,由此能求出原式的值.
(4)(
1
2
)
-2
=4,343
1
3
=7,(
1
27
)
-
1
3
=3
,由此能求出原式的值.
(5)21+
1
2
log25
=2×2log2
5
,由此能求出原式的值.
解答:解::(1)(lg2)2+lg2•lg50+lg25
=(lg2)2+lg2•(2-lg2)+2lg5
=2(lg2+lg5)=2.
(2)log
2
2+log927+
1
4
log4
1
16

=2+
3
2
-
1
2
=3.
(3)
6
1
4
+
33
3
8
+
40.0625
+(
5π
)0-2-1

=
5
2
+
3
2
+
1
2
+1-
1
2

=5.
(4)125+(
1
2
)-2+343
1
3
-(
1
27
)-
1
3

=125+4+7-3
=133.
(5)21+
1
2
log25

=2×2log2
5

=2
5
點評:本題考查對數(shù)的性質和運算法則,解題時要注意公式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算:(1)lg25+lg2•lg50+(lg2)2;
(2)(2
1
4
)
1
2
-(-2009)0-(
27
8
)-
2
3
+(
3
2
)-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)lg25+lg2•lg50;      
(2)30+
(-3)2
+32×34-(323

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)2(lg
2
)2+lg
2
•lg5+
(lg
2
)
2
-lg2+1
;
(2)已知3x=4y=36,求
x+2y
xy
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)(lg2)2+lg2•lg50+lg25;
(2)(log32+log92)•(log43+log83).

查看答案和解析>>

同步練習冊答案