設(shè)A是三角形的一個內(nèi)角,當(dāng)tanA=時A等于

[  ]

A.60°

B.120°

C.30°

D.150°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、以下四個命題:
①如果兩個平面垂直,則其中一個平面內(nèi)的任意一條直線
都垂直于另一個平面內(nèi)無數(shù)條直線;②設(shè)m、n為兩條不
同的直線,α、β是兩個不同的平面,若α∥β,m⊥α,n∥β,則m⊥n,③“直線a⊥b”的充分而不必要條件是“a垂直于b在平面α內(nèi)的射影”;④若點P到一個三角形三條邊的距離相等,則點P在該三角形所在平面上的射影是該三角形的內(nèi)心.其中正確的命題序號為
①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、給出命題:
(1)在空間里,垂直于同一平面的兩個平面平行;
(2)設(shè)l,m是不同的直線,α是一個平面,若l⊥α,l∥m,則m⊥α;
(3)已知α,β表示兩個不同平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的充要條件;
(4)若點P到三角形三個頂點的距離相等,則點P在該三角形所在平面內(nèi)的射影是該三角形的外心;
(5)a,b是兩條異面直線,P為空間一點,過P總可以作一個平面與a,b之一垂直,與另一個平行.
其中正確的命題是
(2)(4)
(只填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•紅橋區(qū)二模)已知橢圓:
x2
a2
+
y2
b2
=l(a>b>0)的一個頂點坐標(biāo)為B(0,1),若該橢圓的離心率等于
3
2

(1)求橢圓的方程.
(2)設(shè)Q是橢圓上任意一點,F(xiàn)1F2分別是左、右焦點,求∠F1QF2的取值范圍;
(3)以B為直角頂點作橢圓的內(nèi)接等腰直角三角形ABC,判斷這樣的三角形存在嗎?若存在,有幾個?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•眉山一模)設(shè)函數(shù)f(x)對其定義域內(nèi)的任意實數(shù)x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內(nèi)任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(當(dāng)x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ
;
④設(shè)A,B,C是一個三角形的三個內(nèi)角,則sinA+sinB+sinC的最大值是
3
3
2

其中,正確命題的序號是
①③④
①③④
(寫出所有你認為正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•四川)設(shè)P1,P2,…Pn為平面α內(nèi)的n個點,在平面α內(nèi)的所有點中,若點P到點P1,P2,…Pn的距離之和最小,則稱點P為P1,P2,…Pn的一個“中位點”,例如,線段AB上的任意點都是端點A,B的中位點,現(xiàn)有下列命題:
①若三個點A、B、C共線,C在線段AB上,則C是A,B,C的中位點;
②直角三角形斜邊的中點是該直角三角形三個頂點的中位點;
③若四個點A、B、C、D共線,則它們的中位點存在且唯一;
④梯形對角線的交點是該梯形四個頂點的唯一中位點.
其中的真命題是
①④
①④
(寫出所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案