【題目】如圖所示的幾何體中,四邊形為正方形,AD∥B,平面ABC⊥平面BC,AB=AC=,AD=1,∠ABC=45°。
(1)求證:AB⊥CD;
(2)求點(diǎn)C到平面D的距離。
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:
(1)三角形ABC中可得;由題意可得,進(jìn)而,故得,于是可證得.(2)取BC的中點(diǎn)O, 的中點(diǎn)M,
連接DO,DM,OM.在三角形DOM中,可證得;在三角形中,可得,故可得,于是得,從而得到,又由得點(diǎn)C到平面的距離為
試題解析:
(1)證明:在三角形ABC中, , ,
∴,
∴.
∵, , ,
∴,
又 ,
∴.
又,
∴,
又 ,
∴
(2)解:如 圖,取BC的中點(diǎn)O, 的中點(diǎn)M,連接DO,DM,OM,
在三角形DOM中, ,
∴,
∴,
∴.
又在三角形中, ,
∴,
又, ,
∴,
∴,
又,
∴.
∵,
∴點(diǎn)C到平面的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù).
(1)若,求的值;
(2)若是函數(shù)的一個(gè)零點(diǎn),求函數(shù)在區(qū)間的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在貫徹中共中央國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位定點(diǎn)幫扶甲、乙兩個(gè)村各50戶(hù)貧困戶(hù).為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶(hù)村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶(hù)的貧困指標(biāo)和,制成下圖,其中“”表示甲村貧困戶(hù),“”表示乙村貧困戶(hù).若,則認(rèn)定該戶(hù)為“絕對(duì)貧困戶(hù)”,若,則認(rèn)定該戶(hù)為“相對(duì)貧困戶(hù)”,若,則認(rèn)定該戶(hù)為“低收入戶(hù)”;若,則認(rèn)定該戶(hù)為“今年能脫貧戶(hù)”,否則為“今年不能脫貧戶(hù)”.
(1)從乙村的50戶(hù)中隨機(jī)選出一戶(hù),求該戶(hù)為“絕對(duì)貧困戶(hù)”的概率;
(2)從甲村所有“今年不能脫貧的非絕對(duì)貧困戶(hù)”中任選2戶(hù),求選出的2戶(hù)均為“低收入戶(hù)”的概率;
(3)試比較這100戶(hù)中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼(xiě)出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜三棱柱的所有棱長(zhǎng)都相等,且.
(1)求證:;
(2)直線(xiàn)與直線(xiàn)所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1) 求實(shí)數(shù)的值;
(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;
(3) 若方程在內(nèi)有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下判斷:①與表示同一函數(shù);②函數(shù)的圖像與直線(xiàn)最多有一個(gè)交點(diǎn);③不是函數(shù);④若點(diǎn)在的圖像上,則函數(shù)的圖像必過(guò)點(diǎn).其中正確的判斷有___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面內(nèi)兩點(diǎn).
(1)求的中垂線(xiàn)方程;
(2)求過(guò)點(diǎn)且與直線(xiàn)平行的直線(xiàn)的方程;
(3)一束光線(xiàn)從點(diǎn)射向(2)中的直線(xiàn),若反射光線(xiàn)過(guò)點(diǎn),求反射光線(xiàn)所在的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中, 橢圓的中心在坐標(biāo)原點(diǎn),其右焦點(diǎn)為,且點(diǎn) 在橢圓上.
(1)求橢圓的方程;
(2)設(shè)橢圓的左、右頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線(xiàn)交橢圓于另一點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn), 求證:三點(diǎn)在同一條直線(xiàn)上
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com