(本小題滿(mǎn)分15分)已知函數(shù)f(x)=,g(x)=alnx,a∈R.
(1)若曲線(xiàn)y=f(x)與曲線(xiàn)y=g(x)相交,且在交點(diǎn)處有相同的切線(xiàn),求a的值及該切線(xiàn)的方程;
(2)設(shè)函數(shù)h(x)=f(x)-g(x),當(dāng)h(x)存在最小值時(shí),求其最小值φ(a)的解析式;
(3)對(duì)(2)中的φ(a),證明:當(dāng)a∈(0,+∞)時(shí),φ(a)≤1
解:(1)f′(x)=,g′(x)=(x>0),
∴兩條曲線(xiàn)交點(diǎn)的坐標(biāo)為(e2,e).切線(xiàn)的斜率為k=f′(e2)=,
∴切線(xiàn)的方程為y-e= (x-e2).
(2)由條件知h(x)=-alnx(x>0),
∴h′(x)=-=,
①當(dāng)a>0時(shí),令h′(x)=0,解得x=4a2
∴當(dāng)0<x<4a2時(shí),h′(x)<0,h(x)在(0,4a2)上單調(diào)遞減;
當(dāng)x>4a2時(shí),h′(x)>0,h(x)在(4a2,+∞)上單調(diào)遞增.
∴x=4a2是h(x)在(0,+∞)上的惟一極值點(diǎn),且是極小值點(diǎn),從而也是h(x)的最小值點(diǎn).
∴最小值φ(a)=h(4a2)=2a-aln(4a2)=2a[1-ln (2a)].
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在上是增函數(shù),在上是減函數(shù),且方程有三個(gè)根,它們分別是.
(1)求的值; (2)求證: (3)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
( 12分)設(shè)函數(shù).
(1)寫(xiě)出定義域及的解析式;
(2)設(shè),討論函數(shù)的單調(diào)性;
(3)若對(duì)任意,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知函數(shù),.
(1)若在上恒為增函數(shù),求的取值范圍;
(2)求在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)已知,函數(shù).
(1)當(dāng)時(shí)討論函數(shù)的單調(diào)性;
(2)當(dāng)取何值時(shí),取最小值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)某廠家擬在2012年舉行促銷(xiāo)活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的
年銷(xiāo)售量(即該廠的年產(chǎn)量)萬(wàn)件與年促銷(xiāo)費(fèi)用萬(wàn)元((為
常數(shù)),如果不搞促銷(xiāo)活動(dòng),則該產(chǎn)品的年銷(xiāo)售量只能是1萬(wàn)件.已知2012年生產(chǎn)該產(chǎn)品的
固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷(xiāo)售價(jià)格
定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(Ⅰ) 將2012年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為年促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);
(Ⅱ) 該廠家2012年的促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)函數(shù) ,且其圖像相鄰的兩條對(duì)稱(chēng)軸為 ,則
A.的最小正周期為 ,且在 上為增函數(shù) |
B.的最小正周期為 ,且在 上為減函數(shù) |
C.的最小正周期為 ,且在 上為增函數(shù) |
D.的最小正周期為 ,且在 上為減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)已知函數(shù)的圖象過(guò)點(diǎn)(1, -4),且函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng).
(1) 求m、n的值及函數(shù)的極值;
(2) 求函數(shù)在區(qū)間上的最大值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com