已知橢圓C1的中心在原點(diǎn),離心率為
4
5
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為10.過(guò)雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
右焦點(diǎn)F2作垂直于x軸的直線交雙曲線C2于M、N兩點(diǎn).
(I)求橢圓C1的標(biāo)準(zhǔn)方程;
(II)若雙曲線C2與橢圓C1有公共的焦點(diǎn),且以MN為直徑的圓恰好過(guò)雙曲線的左頂點(diǎn)A,求雙曲線C2的標(biāo)準(zhǔn)方程;
(III)若以MN為直徑的圓與雙曲線C2的左支有交點(diǎn),求雙曲線C2的離心率的取值范圍.
分析:(I)先設(shè)橢圓C1的標(biāo)準(zhǔn)方程為
x2
a12
+
y2
b12
=1(a1b1>0)
,根據(jù)橢圓的幾何列出方程即可求出各個(gè)系數(shù),從而得出橢圓C1的標(biāo)準(zhǔn)方程;
(II)設(shè)雙曲線的右焦點(diǎn)F2(c.0),將x=c代入雙曲線方程,得M、N兩點(diǎn)的縱坐標(biāo),得出|MN|=
2b2
a
,又以MN為直徑的圓恰好過(guò)雙曲線的左頂點(diǎn)A,且|AF2|=a+c,從而建立等式求出離心率,最后即得雙曲線C2的標(biāo)準(zhǔn)方程;
(III)若以MN為直徑的圓與雙曲線C2的左支有交點(diǎn),則圓的半徑至少要取到a+c,即有a+c≤
b2
a
,兩邊同除以a2,即可求出雙曲線C2的離心率的取值范圍.
解答:解:(I)設(shè)橢圓C1的標(biāo)準(zhǔn)方程為
x2
a12
+
y2
b12
=1(a1b1>0)
,根據(jù)題意:
2a1=10,則a1=5.又e1=
c1
a1
=
4
5
,∴c1=4,b1=3
∴橢圓C1的標(biāo)準(zhǔn)方程為
x2
25
+
y2
9
=1

(II)設(shè)雙曲線的右焦點(diǎn)F2(c.0),將x=c代入雙曲線方程,得y=±
b2
a
,即為M、N兩點(diǎn)的縱坐標(biāo),即|MN|=
2b2
a

∵以MN為直徑的圓恰好過(guò)雙曲線的左頂點(diǎn)A,且|AF2|=a+c,
∴a+c=
b2
a

即a2+ac=b2=c2-a2
整理,得2a2+ac-c2=0,即有e2-e-2=0,又e>1
∴e=2
又雙曲線C2與橢圓C1有公共的焦點(diǎn),則c=4
∴a=2,b2=12
雙曲線C2的標(biāo)準(zhǔn)方程為
x2
4
-
y2
12
=1

(III)若以MN為直徑的圓與雙曲線C2的左支有交點(diǎn),
∴圓的半徑至少要取到a+c,即有a+c≤
b2
a
,
兩邊同除以a2,得
e2-e-2≥0,又e>1
∴e≥2
故雙曲線C2的離心率的取值范圍為[2,+∞).
點(diǎn)評(píng):本題考查圓錐曲線的綜合問(wèn)題,著重考查其標(biāo)準(zhǔn)方程和幾何性質(zhì),待定系數(shù)法求圓錐曲線的方程,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為e=
3
2
,點(diǎn)P為橢圓上一動(dòng)點(diǎn),點(diǎn)F1、F2分別為橢圓的左、右焦點(diǎn),且△PF1F2面積的最大值為
3

(1)求橢圓C1的方程;
(2)設(shè)橢圓短軸的上端點(diǎn)為A,點(diǎn)M為動(dòng)點(diǎn),且
1
5
|
F2A
|2
1
2
F2M
AM
,
AF1
OM
成等差數(shù)列,求動(dòng)點(diǎn)M的軌跡C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0),點(diǎn)A(2,3)在橢圓C1上,求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為
5
3
,且經(jīng)過(guò)點(diǎn)M(
3
,
3
2
)

(Ⅰ)求橢圓C1的方程;
(Ⅱ)已知橢圓C2的長(zhǎng)軸和短軸都分別是橢圓C1的長(zhǎng)軸和短軸的m倍(m>1),中心在原點(diǎn),焦點(diǎn)在y軸上.過(guò)點(diǎn)C(-1,0)的直線l與橢圓C2交于A、B兩個(gè)不同的點(diǎn),若
AC
=2
CB
,求△OAB的面積取得最大值時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•濟(jì)寧一模)已知橢圓C1的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為e=
3
2
,P
為橢圓上一動(dòng)點(diǎn),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),且△PF1F2面積的最大值為
3

(1)求橢圓C1的方程;
(2)設(shè)橢圓短軸的上端點(diǎn)為A、M為動(dòng)點(diǎn),且
1
5
|
F2A
|2,
1
2
F2M
AM
AF1
OM
成等差數(shù)列,求動(dòng)點(diǎn)M的軌跡C2的方程;
(3)過(guò)點(diǎn)M作C2的切線l交于C1與Q、R兩點(diǎn),求證:
OQ
OR
=0

查看答案和解析>>

同步練習(xí)冊(cè)答案