拋物線的頂點在坐標(biāo)原點,焦點是雙曲線x2-2y2=8的一個焦點,則此拋物線的焦點到其準(zhǔn)線的距離等于是________.


分析:先把雙曲線方程整理成標(biāo)準(zhǔn)方程求得焦點坐標(biāo),則可求得拋物線的方程中的p,進(jìn)而求得其準(zhǔn)線方程,則焦點到準(zhǔn)線的距離可求.
解答:整理雙曲線方程得 =1,
∴焦點坐標(biāo)為(2,0)(-2,0),
設(shè)出拋物線方程為y2=2px,
依題意可知 =-2=2
求得p=-4或4,則準(zhǔn)線方程為x=2或x=-2
則拋物線的焦點到其準(zhǔn)線的距離等于
故答案為:
點評:本題主要考查了圓錐曲線的共同特征、拋物線的簡單性質(zhì),考查了學(xué)生對拋物線基本方程的理解和靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點在坐標(biāo)原點,對稱軸是坐標(biāo)軸,并且經(jīng)過點M(2,-2
2
)
,求該拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的頂點在坐標(biāo)原點,焦點是橢圓2x2+4y2=16的一個焦點,則此拋物線的焦點到其準(zhǔn)線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點在坐標(biāo)原點,對稱軸為x軸,且與圓x2+y2=4相交于A、B兩點,|AB|=2
3
,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線的頂點在坐標(biāo)原點,對稱軸為x軸,焦點在直線2x-4y+11=0上,則它的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點在坐標(biāo)原點,焦點為F(1,0),點P是點F關(guān)于y軸的對稱點,過點P的動直線ι交拋物線與A,B兩點.
(1)若△AOB的面積為
52
,求直線ι的斜率;
(2)試問在x軸上是否存在不同于點P的一點T,使得TA,TB與x軸所在的直線所成的銳角相等,若存在求出定點T的坐標(biāo),若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案