分析 (1)由已知列關于首項和公比的方程組,求解方程組即可得到答案;
(2)直接由an=Sn-Sn-1求得n≥2時的通項公式,已知首項后得答案.
解答 解:(1)在等比數列{an}中,由${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$,
得$\left\{\begin{array}{l}{{a}_{1}•{q}^{2}=\frac{3}{2}}\\{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=\frac{9}{2}}\end{array}\right.$,∴2q2-q-1=0,解得q=1或q=$-\frac{1}{2}$;
(2)由${S_n}={n^2}$,得a1=S1=1;
當n≥2時,${a}_{n}={S}_{n}-{S}_{n-1}={n}^{2}-(n-1)^{2}=2n-1$.
a1=1適合上式,
∴an=2n-1.
點評 本題考查數列遞推式,訓練了由數列的前n項和求數列的通項公式,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | -$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com