(1)求過直線x+y+4=0與x-y+2=0的交點,且平行于直線 x-2y=0的直線方程.
(2)設(shè)直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點A、B,求弦AB的長及其垂直平分線的方程.
(3)過點P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點平分,求直線l的方程.
(1)解方程組
x+y+4=0
x-y+2=0
,得
x=-3
y=1

∴交點坐標(biāo)為(-3,1),
又∵所求直線平行于直線 x-2y=0,∴斜率為
1
2

∴直線方程為y-1=
1
2
(x+3),即x-2y+5=0
(2)圓x2+y2-2x-3=0可化為(x-1)2+y2=4,∴圓心C的坐標(biāo)為(1,0),半徑為2.
圓心C到直線4x+3y+1=0的距離d=
|4+1|
5
=1
1
2
|AB|=
r2+d2
=
5
,
∴|AB|=2
5

∵直線l的斜率為-
4
3
,∴垂直平分線的斜率為
3
4

又∵直線l的垂直平分線過圓心(1,0),∴方程為y=
3
4
(x-1)
化簡得,3x-4y-3=0
(3)設(shè)直線l夾在直線l1,l2之間的部分是MN,且MN被P(3,0)平分.
設(shè)點M,N的坐標(biāo)分別是(x1,y1),(x2,y2),則有
x1+x2=6
y1+y2=0

又∵M(jìn),N兩點分別在直線l1,l2上,∴
x1-y1-2=0
x2+y2+3=0

由上述四個式子得 x1=
11
3
,y1=
16
3
,即M點坐標(biāo)是(
11
3
,
16
3
),
∴直線l的方程為8x-y-24=0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求過直線x+y+1=0 與 2x+3y-4=0的交點且斜率為-2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求過直線x+y+4=0與x-y+2=0的交點,且平行于直線 x-2y=0的直線方程.
(2)設(shè)直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點A、B,求弦AB的長及其垂直平分線的方程.
(3)過點P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過直線x+y+1=0 與 2x+3y-4=0的交點且斜率為-2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年浙江省溫州市瑞安五中高一(下)模塊月考數(shù)學(xué)試卷(必修2)(解析版) 題型:解答題

(1)求過直線x+y+4=0與x-y+2=0的交點,且平行于直線 x-2y=0的直線方程.
(2)設(shè)直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點A、B,求弦AB的長及其垂直平分線的方程.
(3)過點P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點平分,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案