1、直線l:x+2y-3=0關(guān)于直線y=x對(duì)稱的直線方程為(  )
分析:由于對(duì)稱軸是y=x所以可以利用反函數(shù)解答,即可得到所求直線方程.
解答:解:直線l:x+2y-3=0關(guān)于直線y=x對(duì)稱,所以對(duì)稱的直線與已知直線互為反函數(shù),所以對(duì)直線方程為:y+2x-3=0.
故選D.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查直線的對(duì)稱知識(shí),一般方法是利用垂直平分的方法,本題巧妙的靈活反函數(shù)解答,仔細(xì)分析題意是解好數(shù)學(xué)題目的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一圓經(jīng)過(guò)點(diǎn)A(2,-3)和B(-2,-5),且圓心C在直線l:x-2y-3=0上,求此圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為坐標(biāo)原點(diǎn),圓C:x2+y2+x-6y+3=0與直線l:x+2y-3=0的兩個(gè)交點(diǎn)為P,Q,則∠POQ=
90°
90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓心為C的圓經(jīng)過(guò)點(diǎn)A(0,1)和B(-2,3),且圓心在直線l:x+2y-3=0上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若圓C的切線在x軸,y軸上的截距相等,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•崇明縣二模)已知直線l:x+2y+3=0的方向向量為
d
,圓C:(x-a)2+(y-b)2=r2的圓心為Q(a,b),半徑為r.如果從{1,2,3,4,…,9,10}中任取3個(gè)不同的元素分別作為a,b,r的值,得到不同的圓,能夠使得
d
OQ
=0
(O為坐標(biāo)原點(diǎn))的概率等于
1
18
1
18
.(用分?jǐn)?shù)表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案