已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績(jī)拉樣統(tǒng)計(jì),先將800人按001,002,…,800進(jìn)行編號(hào).
(1)如果從第8行第7列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的3個(gè)人的編號(hào);(下面摘取了第7行至第9行)

(2)抽取取100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)绫恚?br />
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格
地理優(yōu)秀7205
良好9186
及格a4b
成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí),橫向、縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?0+18+4=42人,若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率為30%,求a,b的值.
(3)在地理成績(jī)?yōu)榧案竦膶W(xué)生中,已知a≥10,b≥18,求數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.
考點(diǎn):離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(1)利用隨機(jī)數(shù)表法直接求解.
(2)由
7+9+a
100
=0.3,能求出a,再由7+9+a+20+18+4+5+6+b=100,能求出b.
(3)由題意,知a+b=31,且a≥10,b≥18,滿足條件的(a,b)有14組,其中數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少有6組,由此能求出數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.
解答: (本小題滿分12分)
解:(1)依題意,最先檢測(cè)的3個(gè)人的編號(hào)依次為785,667,199.…(3分)
(2)由
7+9+a
100
=0.3,解得a=14,…(5分)
∵7+9+a+20+18+4+5+6+b=100,∴b=17.…(7分)
(3)由題意,知a+b=31,且a≥10,b≥18,
∴滿足條件的(a,b)有:(10,21),(11,20),
(12,19),(13,18),(14,17),(15,16),
(16,15),(17,14),(18,13),(19,12),
(20,11),(21,10),(22,9),(23,8)共14組,
且每組出現(xiàn)的可能性相同.….…(9分)
其中數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少有:
(10,21),(11,20),(12,19),(13,18),
(14,17),(15,16)共6組.…(11分)
∴數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率為
6
14
=
3
7
.…(12分)
點(diǎn)評(píng):本題考查隨機(jī)數(shù)表法的應(yīng)用,考查統(tǒng)計(jì)表的應(yīng)用,考查概率的求法,是中檔題,解題時(shí)要注意列舉法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列命題
①命題“對(duì)任意的x<0,x3-x2+1≤0”的否定是“存在x≥0,x3-x2+1>0”;
②函數(shù)f(x)=2x-x2的零點(diǎn)有2個(gè);③若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實(shí)數(shù)a=0;
④若函數(shù)f(x)=
ax-5,(x>6)
(4-
a
2
)x+4,(x≤6)
在R上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為(1,8).       
其中真命題的序號(hào)是
 
(寫(xiě)出所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知存在正數(shù)a,b,c滿足
1
e
c
a
≤2,clnb=a+clnc,則ln
b
a
的取值范圍是( 。
A、[1,
1
2
+ln2]
B、[1,+∞)
C、(-∞,e-1]
D、[1,e-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2為橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點(diǎn),點(diǎn)M在橢圓Γ上.若△MF1F2為直角三角形,且|MF1|=2|MF2|,則橢圓Γ的離心率為( 。
A、
3
3
5
3
B、
5
3
6
3
C、
6
3
7
3
D、
3
3
5
-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),對(duì)?x∈R都有f(x-1)=f(x+1)成立,當(dāng)x∈(0,1]且x1≠x2時(shí),有
f(x2)-f(x1)
x2-x1
<0.給出下列命題:
(1)f(1)=0
(2)f(x)在[-2,2]上有5個(gè)零點(diǎn)
(3)(2013,0)是函數(shù)y=f(x)的一個(gè)對(duì)稱中心
(4)直線是函數(shù)y=f(x)圖象的一條對(duì)稱軸
則正確命題個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為e=
2
2
,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線x-y+
2
=0
相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)右焦點(diǎn)F作斜率為-
2
2
的直線l交曲線C于M、N兩點(diǎn),且
OM
+
ON
+
OH
=
0
,又點(diǎn)H關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)G,試問(wèn)M、G、N、H四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ln(ax2+x+1),
(1)若f(x)的定義域?yàn)镽,求a的取值范圍;
(2)若f(x)的值域?yàn)镽,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心為原點(diǎn)O,離心率e=
2
2
,其一個(gè)焦點(diǎn)在拋物線C2:y2=2px的準(zhǔn)線上,若拋物線C2與直線l:x-y+
2
=0
相切.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)點(diǎn)Q(u,v)在橢圓C1上運(yùn)動(dòng)時(shí),設(shè)動(dòng)點(diǎn)P(2v-u,u+v)的運(yùn)動(dòng)軌跡為C3.若點(diǎn)T滿足:
OT
=
MN
+2
OM
+
ON
,其中M,N是C3上的點(diǎn),直線OM與ON的斜率之積為-
1
2
,試說(shuō)明:是否存在兩個(gè)定點(diǎn)F1,F(xiàn)2,使得|TF1|+|TF2|為定值?若存在,求F1,F(xiàn)2的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四棱錐的各棱長(zhǎng)均為4cm,則它的全面積等于
 
cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案