已知log3m>log3n,則( 。
分析:由于函數(shù)y=log3x在其定義域(0,+∞)上是增函數(shù),且log3m>log3n,可得m、n的關(guān)系.
解答:解:由于函數(shù)y=log3x在其定義域(0,+∞)上是增函數(shù),且log3m>log3n,
可得 m>n>0,
故選A.
點評:本題主要考查對數(shù)函數(shù)的定義域、單調(diào)性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

13、已知函數(shù)y=log3(kx+1)的值域是R,則實數(shù)k的取值范圍是
(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知log7(log3(log2x))=0,那么x-
1
2
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=log3(x2+2x-
1
4
a2+
5
2
a-3)
的定義域為R
(1)求a的取值范圍;
(2)若函數(shù)g(a)=2+log2a+log2a×|log2a-3|,求g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=log3(mx+1)在(-∞,1)上是減函數(shù),則實數(shù) m的取值范圍是
[-1,0)
[-1,0)

查看答案和解析>>

同步練習冊答案