在平面直角坐標系xOy中,設(shè)A是半圓O:x2+y2=2(x≥0)上一點,直線OA的傾斜角為45°,過點A作x軸的垂線,垂足為H,過H作OA的平行線交半圓于點B,則直線AB的方程是
 
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:由題意可得點A(1,1),點H(1,0),HB的斜率為1,求得HB的方程,代入半圓的方程,求得點B的坐標,
再由兩點式求得直線AB的方程.
解答: 解:由題意可得點A(1,1),點H(1,0),∴HB的斜率為1,
HB的方程為y-0=x-1,代入半圓O:x2+y2=2(x≥0),可得點B的坐標為(
1+
3
2
,
3
-1
2
),
再由兩點式求得直線AB的方程為
y-1
3
-1
2
-1
=
x-1
1+
3
2
-1
,
化簡可得
3
x
+y-
3
-1=0,
故答案為:
3
x
+y-
3
-1=0.
點評:本題主要考查直線和圓的位置關(guān)系的應(yīng)用,用兩點式求直線的方程,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

3
1
a
+
1
b
+
1
c
”稱為a,b,c三個正實數(shù)的“調(diào)和平均數(shù)”,若正數(shù)x,y滿足“x,y,xy的調(diào)和平均數(shù)為3”,則x+2y的最小值是(  )
A、3B、5C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{an},把a1作為新數(shù)列{bn}的第一項,把ai或-ai(i=2,3,4,…,n)作為新數(shù)列{bn}的第i項,數(shù)列{bn}稱為數(shù)列{an}的一個生成數(shù)列.例如,數(shù)列1,2,3,4,5的一個生成數(shù)列是1,-2,-3,4,5.已知數(shù)列{bn}為數(shù)列{
1
2n
}(n∈N*)的生成數(shù)列,Sn為數(shù)列{bn}的前n項和.
(Ⅰ)寫出S3的所有可能值;
(Ⅱ)若生成數(shù)列{bn}滿足的通項公式為bn=
1
2n
 , n=3k+1 , 
-
1
2n
 , n≠3k+1 , 
(k∈N),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
8
+
y2
4
=1
,F(xiàn)1,F(xiàn)2分別為橢圓C1的左頂點和右頂點.以F1,F(xiàn)2為焦點作與橢圓C1離心率相同的橢圓C2
(1)P為橢圓C1上異于F1,F(xiàn)2的任意一點.設(shè)直線PF1的斜率為k1,直線PF2的斜率為k2.求證:k1•k2為定值;
(2)若直線PF1交C2于A,B兩點,直線PF2交C2于C,D兩點,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
9
4(1+4x2)
+x2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖中的程序框圖,輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≥3}∪{x|x<-1},則∁RA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的連續(xù)函數(shù)y=f(x),對任意x滿足f(4-x)=f(x),(x-2)f′(x)<0.則下列結(jié)論正確的有
 

①函數(shù)y=f(x+2)為偶函數(shù);
②f(
2
)>f(sin18°+cos18°);
③若f(2)=2014,f(2014)=-2,則y=f(x)有兩個零點;
④若x1<x2且x1+x2>4則f(x1)<f(x2);
⑤在△ABC中,若三個內(nèi)角A、B、C成等差數(shù)列,且f(
3
sinA)<f(sin(C-
π
6
)),則△ABC為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+x-1.
(1)求f(2); 
(2)求f(
1
x
+1);
(3)若f(x)=5,求x的值.

查看答案和解析>>

同步練習冊答案