已知y=f(x)=xlnx.
(1)求函數(shù)y=f(x)的圖像在x=e處的切線方程;
(2)設(shè)實(shí)數(shù)a>0,求函數(shù)在[a,2a]上的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:新課程高中數(shù)學(xué)疑難全解 題型:044
已知y=f(x)=x2+ax+b,設(shè)x=1時函數(shù)值為y1,即y1=f(x1),x=2時,函數(shù)值為y2=f(x2),x=3時的函數(shù)值為y3=f(x3).
(1)求y1-2y2+y3的值;
(2)求證:|y1|,|y2|,|y3|中至少有一個不小于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年高考預(yù)測卷數(shù)學(xué)科(一)新課標(biāo) 題型:044
已知函數(shù)y=f(x)滿足:;
(1)分別寫出x∈[0,1)時y=f(x)的解析式f1(x)和x∈[1,2)時y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z時y=f(x)的解析式fn+1(x)(用x和n表示)(不必證明)
(2)當(dāng)(n≥-1,n∈Z)時,y=fn+1(x)x∈[n,n+1),n≥-1,n∈Z的圖象上有點(diǎn)列An+1(x,f(x))和點(diǎn)列Bn+1(n+1,f(n+1)),線段An+1Bn+2與線段Bn+1+An+2的交點(diǎn)Cn+1,求點(diǎn)Cn+1的坐標(biāo)(an+1(x),bn+1(x));
(3)在前面(1)(2)的基礎(chǔ)上,請你提出一個點(diǎn)列Cn+1(an+1(x),bn+1(x))的問題,并進(jìn)行研究,并寫下你研究的過程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知y=x(x-1)(x+1)的圖像如圖所示,今考慮f(x)=x(x-1)(x+1)+0.01,對于方程式f(x)=0根的情況,以下說法正確的是________.(填上正確的序號)
①有三個實(shí)根;
②當(dāng)x<-1時,恰有一實(shí)根;
③當(dāng)-1<x<0時,恰有一實(shí)根;
④當(dāng)0<x<1時,恰有一實(shí)根;
⑤當(dāng)x>1時,恰有一實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知y=f(x)是定義在R上的奇函數(shù),則下列函數(shù)中為奇函數(shù)的是( )
①y=f(|x|);②y=f(-x);③y=xf(x);④y=f(x)+x.
A.①③ B.②③
C.①④ D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年山西大學(xué)附中高一第二次月考數(shù)學(xué)試卷 題型:選擇題
已知y=f(x)是定義在R上的奇函數(shù),當(dāng)時,,則f(x)在R上的表達(dá)式是( )
A.y=x(x-2) B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com