如圖,四面體ABCD中,E、F分別是AC、BD的中點,若CD=2AB=2,EF⊥AB,則EF與CD所成的角等于___________________________.

解析:取AD的中點G,連結(jié)EG、FG,易知EG=1,FG=.由EF⊥AB及GF∥AB知EF⊥FG.

在Rt△EFG中,求得∠GEF=30°,即為EF與CD所成的角.

答案:30°

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖四面體ABCD中,O,E分別是BD,BC的中點,CA=CB=CD=BD=2,AB=AD=
2

(1)求證:直線BD⊥平面AOC
(2)求點E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四面體ABCD中,O、E分別是BD、BC的中點,CA=CB=CD=BD=2,AB=AD=.

(1)求證:AO⊥平面BCD;

(2)求異面直線AB與CD所成角的大小;

(3)求點E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四面體ABCD中,O、E分別是BD、BC的中點,

CA=CB=CD=BD=2,AB=AD=.

(1)求證:AO⊥平面BCD;

(2)求異面直線AB與CD所成角的大小;

(3)求點E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四面體ABCD中,O、E分別是BD、BC的中點,CA=CB=CD=BD=2,AB=AD=.

(1)求證:AO⊥平面BCD;

(2)求異面直線AB與CD所成角的大小;

(3)求點E到平面ACD的距離.

查看答案和解析>>

同步練習冊答案