如圖所示,已知PA與⊙O相切,A為切點,過點P的割線交圓于B、C兩點,弦CD∥AP,AD、BC相交于點E,F(xiàn)為CE上一點,且DE2 = EF·EC.
(Ⅰ)求證:CE·EB = EF·EP;
(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的長.
科目:高中數(shù)學 來源: 題型:解答題
如圖,為△外接圓的切線,的延長線交直線于點,分別為弦與弦上的點,且,四點共圓.
(Ⅰ)證明:是△外接圓的直徑;
(Ⅱ)若,求過四點的圓的面積與△外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,過圓O外一點P作該圓的兩條割線PAB和PCD,分別交圓 O于點A,B,C,D弦AD和BC交于Q點,割線PEF經(jīng)過Q點交圓 O于點E、F,點M在EF上,且:
(I)求證:PA·PB=PM·PQ; (II)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知PA是⊙O相切,A為切點,PBC為割線,弦CD//AP,AD、BC相交于E點,F(xiàn)為CE上一點,且
(1)求證:A、P、D、F四點共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2,OA=OM,求MN的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.
⑴證明:圓心O在直線AD上;
⑵證明:點C是線段GD的中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
A.(幾何證明選講選做題)
|
B.(矩陣與變換選做題) 已知M=,N=,設(shè)曲線y=sinx在矩陣MN對應(yīng)的變換作用下得到曲線F,求F的方程. |
C.(坐標系與參數(shù)方程選做題) 在平面直角坐標系xOy中,直線m的參數(shù)方程為(t為參數(shù));在以O為極點、射線Ox為極軸的極坐標系中,曲線C的極坐標方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點,求線段AB的長. |
D.(不等式選做題) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分10分)選修4-1:幾何證明選講
如圖所示,已知與⊙相切,為切點,為割線,弦,、相交于點,為上一點,且
(1) 求證:;
(2) (2)求證:·=·.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com