精英家教網 > 高中數學 > 題目詳情

如圖,平面,,,,分別為的中點.

(I)證明:平面

(II)求與平面所成角的正弦值.

 

【答案】

(I)只需證;(II)

【解析】

試題分析:(I)證明:連接,  在中,分別是的中點,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD。

(Ⅱ)在中,,所以

而DC平面ABC,,所以平面ABC

平面ABE, 所以平面ABE平面ABC, 所以平面ABE

由(Ⅰ)知四邊形DCQP是平行四邊形,所以

所以平面ABE, 所以直線AD在平面ABE內的射影是AP,

所以直線AD與平面ABE所成角是

中, ,

所以。

考點:線面平行的判定定理;線面角。

點評:本題主要考查了空間中直線與平面所成的角,屬立體幾何中的?碱}型,較難.本題也可以用向量法來做。而對于利用向量法求線面角關鍵是正確寫出點的坐標和求解平面的一個法向量。注意計算要仔細、認真。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,平面ABCD⊥平面ABE,其中四邊形ABCD是正方形,△ABE是等邊三角形,且AB=2,點F、G分別是BC、AE的中點.
(Ⅰ)求三棱錐F-ABE的體積;
(Ⅱ)求證:BG∥平面EFD;
(Ⅲ)若點P在線段DE上運動,求證:BG⊥AP.

查看答案和解析>>

科目:高中數學 來源: 題型:

10、如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p、q分別是M到直線l1和l2的距離,則稱有序非負實數對(p,q)是點M的“距離坐標”.已知常數p≥0,q≥0,給出下列命題:
①若p=q=0,則“距離坐標”為(0,0)的點有且僅有1個;
②若pq=0,且p+q≠0,則“距離坐標”為(p,q)的點有且僅有2個;
③若pq≠0,則“距離坐標”為(p,q)的點有且僅有4個.
上述命題中,正確命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,E,F,G分別是線段PA、PD、CD的中點.
(1)求證:PB∥平面EFG
(2)在線段CD上是否存在一點Q,使得點A到平面EFQ的距離為0.8,若存在,求出CQ的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•溫州模擬)如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點.
(1)求證:PB∥平面EFG;
(2)求異面直線EG與BD所成的角;
(3)在線段CD上是否存在一點Q,使得點A到平面EFQ的距離為
45
.若存在,求出CQ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點.
求證:PB∥平面EFG.

查看答案和解析>>

同步練習冊答案