12.將函數(shù)y=5sin(2x+$\frac{π}{4}$)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則φ=$\frac{π}{8}$.

分析 求得y=5sin(2x+$\frac{π}{4}$)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后的解析式,利用正弦函數(shù)的對(duì)稱性可得φ的值.

解答 解:∵y=5sin(2x+$\frac{π}{4}$)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后得:
g(x)=f(x+φ)=2sin(2x+2φ+$\frac{π}{4}$),
∵g(x)=2sin(2x+2φ+$\frac{π}{4}$)的圖象關(guān)于y軸對(duì)稱,
∴g(x)=2sin(2x+2φ+$\frac{π}{4}$)為偶函數(shù),
∴2φ+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,
∴φ=$\frac{1}{2}$kπ+$\frac{π}{8}$,k∈Z.
∵0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{8}$.
故答案為:$\frac{π}{8}$.

點(diǎn)評(píng) 本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,求得函數(shù)圖象平移后的解析式是關(guān)鍵,考查綜合分析與運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知點(diǎn)G是△ABC的重心,A(0,-1),B(0,1).在x軸上有一點(diǎn)M,滿足|$\overrightarrow{MA}$|=|$\overrightarrow{MC}$|,$\overrightarrow{GM}$=λ$\overrightarrow{AB}$(λ∈R)(若△ABC的頂點(diǎn)坐標(biāo)為A(x1,y1),B(x2,y2),C(x3,y3),則該三角形的重心坐標(biāo)為G($\frac{{{x_1}+{x_2}+{x_3}}}{3}$,$\frac{{{y_1}+{y_2}+{y_3}}}{3}$).
(1)求點(diǎn)C的軌跡E的方程;
(2)若斜率為k的直線l與(1)中的曲線E交于不同的兩點(diǎn)P、Q,且|$\overrightarrow{AP}$|=|$\overrightarrow{AQ}$|,試求斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直線l1:(a-1)x+y+3=0,直線l2:2x+ay+1=0,若l1∥l2,則a=( 。
A.-1B.2C.-1,2D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)y=$\sqrt{x+1}+\frac{1}{x+1}$的定義域?yàn)椋?1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知α∈(0,π),tan($α-\frac{π}{4}$)=$\frac{1}{3}$,則sin($\frac{π}{4}+α$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率為$\frac{\sqrt{3}}{2}$,且點(diǎn)(-$\sqrt{3}$,$\frac{1}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于點(diǎn)P,Q,線段PQ的中點(diǎn)為H,O為坐標(biāo)原點(diǎn)且OH=1,求△POQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.?dāng)?shù)列的前4項(xiàng)為1,-$\frac{1}{2}$,$\frac{1}{3}$,-$\frac{1}{4}$,則此數(shù)列的通項(xiàng)公式可以是( 。
A.(-1)n$\frac{1}{n}$B.(-1)n+1$\frac{1}{n}$C.(-1)n$\frac{1}{n+1}$D.(-1)n+1$\frac{1}{n-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某航運(yùn)公司有6艘可運(yùn)載30噸貨物的A型貨船與5艘可運(yùn)載50噸貨物的B型貨船,現(xiàn)有每天至少運(yùn)載900噸貨物的任務(wù),已知每艘貨船每天往返的次數(shù)為A型貨船4次和B型貨船3次,每艘貨船每天往返的成本費(fèi)為A型貨船160元,B型貨船252元,那么,每天派出A型貨船和B型貨船各多少艘,公司所花的成本費(fèi)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的和為Sn,且滿足:$2{S_n}={a_n}^2+a{\;}_n$,(n∈N+
(1)求a1,a2,a3的值
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案