證明:a+b+c≥3
3abc
考點(diǎn):不等式的證明
專題:證明題,不等式的解法及應(yīng)用
分析:由排序原理:順序和≥反序和,結(jié)合基本不等式,即可得到結(jié)論.
解答: 證明:不妨設(shè)a=x3,b=y3,c=z3,x≥y≥z>0,∴x2≥y2≥z2,
由排序原理:順序和≥反序和,得:
x3+y3≥x2y+y2x,y3+z3≥y2z+z2y,z3+x3≥x2z+z2x
三式相加得2(x3+y3+z3)≥x(y2+z2)+y(z2+x2)+z(x2+y2).
又x2+y2≥2xy,y2+z2≥2yz,z2+x2≥2zx.
所以2(x3+y3+z3)≥6xyz,
∴x3+y3+z3≥3xyz,當(dāng)且僅當(dāng)x=y=z時,等號成立.
∴a+b+c≥3
3abc
點(diǎn)評:本題考查排序原理:順序和≥反序和,考查不等式的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
64
-
y2
25
=1上點(diǎn)P到右準(zhǔn)線的距離為
32
5
,則P點(diǎn)到右焦點(diǎn)的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-1)2+y2=1和圓x2+y2+2x+4y-4=0的位置關(guān)系為( 。
A、相交B、相切
C、相離D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P是拋物線y2=4x上一點(diǎn),A(5,3),F(xiàn)為拋物線的焦點(diǎn),則|PA|+|PF|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線的兩個焦點(diǎn)分別為F1,F(xiàn)2,若雙曲線上存在點(diǎn)P滿足|PF1|:|F1F2|:|PF2|=6:5:3,則雙曲線的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個正方體的八個頂點(diǎn)都在一個球的表面上,若此正方體的棱長為2,那么這個球的表面積是
 
.注:S=4πR2(R為球的半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察式子1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
…則可歸納出關(guān)于正整數(shù)n(n∈N*,n≥2)的式子為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,1),B(2,4),則直線AB的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,滿足2+2Sn=3an(n∈N*.?dāng)?shù)列bn=
1,n=1
an-1
n
,n≥2

(1)求證:數(shù)列{an}為等比數(shù)列;
(2)若對于任意n∈N*,不等式bn≥(n+1)λ恒成立,求實(shí)數(shù)λ的最大值.

查看答案和解析>>

同步練習(xí)冊答案