精英家教網 > 高中數學 > 題目詳情

(12分)已知函數是定義在上的偶函數,已知當時,.

(1)求函數的解析式;

(2)求函數的單調遞增區(qū)間;

(3)求在區(qū)間上的值域。

 

【答案】

(1)

(2)函數的單調遞增區(qū)間為

(3)值域為(

【解析】

試題分析:解:(1)∵函數是定義在上的偶函數

∴對任意的都有成立

∴當時,

      4分

(2)圖形如圖所示,函數的單調遞增區(qū)間為.(寫成開區(qū)間也可以)8分

(3)值域為(     12分

考點:函數的單調性和解析式的運用

點評:解決該試題的關鍵是利用二次函數的性質,以及奇偶性來分析得到函數的解析式,并求解單調性,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆廣西柳州鐵路一中高一上學期第一次月考數學試卷(解析版) 題型:解答題

已知函數是定義在上的奇函數,且。

(1)求函數的解析式;

(2)用單調性的定義證明上是增函數;

(3)解不等式。

 

查看答案和解析>>

科目:高中數學 來源:2015屆遼寧省本溪市高一上學期第一次月考數學試卷(解析版) 題型:解答題

(12分)已知函數是定義在上的奇函數,且,

(1)確定函數的解析式;

(2)用定義證明在(-1 ,1)上是增函數;

(3)解不等式

 

查看答案和解析>>

科目:高中數學 來源:2013屆廣東省高二下期中文科數學試卷(解析版) 題型:選擇題

已知函數是定義在上的以5為周期的奇函數, 若,

  ,則a的取值范圍是 (    )

A.                                 B.

C.                                  D.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省協作體高三3月調研理科數學試卷(解析版) 題型:解答題

已知函數是定義在上的奇函數,當時, (其中e是自然界對數的底,)

(Ⅰ)設,求證:當時,;

(Ⅱ)是否存在實數a,使得當時,的最小值是3 ?如果存在,求出實數a的值;如果不存在,請說明理由。

 

查看答案和解析>>

科目:高中數學 來源:黑龍江省2012屆高二下學期期末考試數學(理) 題型:解答題

已知函數是定義在上的奇函數,且

(1)確定函數的解析式;

(2)判斷并證明的單調性;

(3)解不等式

 

查看答案和解析>>

同步練習冊答案