如圖,橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓M有兩個不同的交點P,Q,l與矩形ABCD有兩個不同的交點S,T.求
|PQ|
|ST|
的最大值及取得最大值時m的值.
(I)e=
c
a
=
3
2
a2-b2
a2
=
3
4
…①
矩形ABCD面積為8,即2a•2b=8…②
由①②解得:a=2,b=1,
∴橢圓M的標(biāo)準(zhǔn)方程是
x2
4
+y2=1

(II)
x2+4y2=4
y=x+m
⇒5x2+8mx+4m2-4=0

由△=64m2-20(4m2-4)>0得-
5
<m<
5

設(shè)P(x1,y1),Q(x2,y2),則x1+x2=-
8
5
m,x1x2=
4m2-4
5
,
|PQ|=
2
(-
8
5
m)
2
-4
4m2-4
5
=
4
2
5
5-m2

當(dāng)l過A點時,m=1,當(dāng)l過C點時,m=-1.
①當(dāng)-
5
<m<-1
時,有S(-m-1,-1),T(2,2+m),|ST|=
2
(3+m)
,
|PQ|
|ST|
=
4
5
5-m2
(3+m)2
=
4
5
-
4
t2
+
6
t
-1

其中t=m+3,由此知當(dāng)
1
t
=
3
4
,即t=
4
3
,m=-
5
3
∈(-
5
,-1)
時,
|PQ|
|ST|
取得最大值
2
5
5

②由對稱性,可知若1<m<
5
,則當(dāng)m=
5
3
時,
|PQ|
|ST|
取得最大值
2
5
5

③當(dāng)-1≤m≤1時,|ST|=2
2
,
|PQ|
|ST|
=
2
5
5-m2

由此知,當(dāng)m=0時,
|PQ|
|ST|
取得最大值
2
5
5

綜上可知,當(dāng)m=±
5
3
或m=0時,
|PQ|
|ST|
取得最大值
2
5
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)以F1、F2為左、右焦點,離心率e=
1
2
,一個短軸的端點(0,
3
);拋物線C2:y2=4mx(m>0),焦點為F2,橢圓C1與拋物線C2的一個交點為P.
(1)求橢圓C1與拋物線C2的方程;
(2)直線l經(jīng)過橢圓C1的右焦點F2與拋物線C2交于A1,A2兩點,如果弦長|A1A2|等于△PF1F2的周長,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,左焦點為F,過原點的直線l交橢圓于M,N兩點,△FMN面積的最大值為1.
(1)求橢圓E的方程;
(2)設(shè)P,A,B是橢圓E上異于頂點的三點,Q(m,n)是單位圓x2+y2=1上任一點,使
OP
=m
OA
+n
OB

①求證:直線OA與OB的斜率之積為定值;
②求OA2+OB2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知A(-2,0),B(2,0),P為平面內(nèi)一動點,直線PA,PB的斜率之積為-
1
4
,記動點P的軌跡為C.
(1)求曲線C的軌跡方程;
(2)若點D(0,2),點M,N是曲線C上的兩個動點,且
DM
DN
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的兩焦點分別為F1(-2
2
,0)、F2(2
2
,0),長軸長為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),F(xiàn)1、F2是其左右焦點,其離心率是
6
3
,P是橢圓上一點,△PF1F2的周長是2(
3
+
2
).
(1)求橢圓的方程;
(2)試對m討論直線y=2x+m(m∈R)與該橢圓的公共點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線y=kx與雙曲線
x2
a2
-
y2
b2
=1
的左右兩支都有交點的充要條件是k∈(-1,1),且該雙曲線與直線y=
1
2
x-
3
2
相交所得弦長為
4
15
3
,則該雙曲線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點在原點,焦點F與雙曲線x2-
y2
4
=1
的右頂點重合.
(1)求拋物線的方程;
(2)若直線l經(jīng)過焦點F,且傾斜角為60°,與拋物線交于A、B兩點,求:弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
5
2
3

(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A、B兩點.
①若線段AB中點的橫坐標(biāo)為-
1
2
,求斜率k的值;
②已知點M(-
7
3
,0)
,求證:
MA
MB
為定值.

查看答案和解析>>

同步練習(xí)冊答案