(本小題滿(mǎn)分13分)已知橢圓C的中心在圓點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),過(guò)F1的直線(xiàn)與橢圓交于A,B兩點(diǎn),的面積為4,的周長(zhǎng)為(I)求橢圓C的方程;(II)設(shè)點(diǎn)Q的坐標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直線(xiàn)PF1,PF2都相切,若存在,求出P點(diǎn)坐標(biāo)及圓的方程;若不存在,請(qǐng)說(shuō)明理由。
(I)由題意知:,解得
∴橢圓的方程為      …………………………  5分
(II)假設(shè)存在橢圓上的一點(diǎn),使得直線(xiàn)與以為圓心的圓相切,則到直線(xiàn)的距離相等,
: ,:     
化簡(jiǎn)整理得:…  9分
∵點(diǎn)在橢圓上,∴   解得: 或(舍)…… 11分
時(shí),,,∴橢圓上存在點(diǎn),其坐標(biāo)為,使得直線(xiàn)與以為圓心的圓相切 ……………… 13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

為過(guò)橢圓的中心的弦,為橢圓的左焦點(diǎn),則?面積的最大值(  )
A.6B.12C.24D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分10分)求過(guò)點(diǎn)且與橢圓有相同焦點(diǎn)的橢圓方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線(xiàn)與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿(mǎn)足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線(xiàn)的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正六邊形的兩個(gè)頂點(diǎn)為橢圓的兩個(gè)焦點(diǎn),其余四個(gè)頂點(diǎn)在
橢圓上,則該橢圓的離心率的值是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果橢圓的焦距、短軸長(zhǎng)、長(zhǎng)軸長(zhǎng)成等差數(shù)列,則其離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的焦點(diǎn)重合,則該橢圓的離心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線(xiàn)與圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若不過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓相交于、兩點(diǎn),且求證:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)設(shè)分別是橢圓,的左、右焦點(diǎn),是該橢圓上一個(gè)動(dòng)點(diǎn),且,
、求橢圓的方程;
、求出以點(diǎn)為中點(diǎn)的弦所在的直線(xiàn)方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案