過點(diǎn)(0,1)的直線與x2+y2=4相交于A、B兩點(diǎn),則|AB|的最小值為
2
3
2
3
分析:計(jì)算弦心距,再求半弦長,由此能得出結(jié)論.
解答:解:∵x2+y2=4的圓心O(0,0),半徑r=2,
∴點(diǎn)(0,1)到圓心O(0,0)的距離d=1,
∴點(diǎn)(0,1)在圓內(nèi).
如圖,|AB|最小時(shí),弦心距最大為1,
∴|AB|min=2
22-12
=2
3

故答案為:2
3
點(diǎn)評(píng):本題考查圓的簡單性質(zhì)的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意數(shù)形結(jié)合思想的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C的中心在原點(diǎn),右焦點(diǎn)為F(
2
3
3
,0),漸近線方程為y=±
3
x

(Ⅰ)求雙曲線C的方程;
(Ⅱ)若過點(diǎn)(0,1)的直線L與雙曲線的右支交與兩點(diǎn),求直線L的斜率的范圍;
(Ⅲ)設(shè)直線L:y=kx+1與雙曲線C交與A、B兩點(diǎn),問:當(dāng)k為何值時(shí),以AB為直徑的圓過原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩定點(diǎn)F1(-
2
,0),F2(
2
,0)
,滿足條件|
PF2
|-|
PF1
|=2
的點(diǎn)P的軌跡是曲線E,過點(diǎn)(0,-1)的直線l與曲線E交于A,B兩點(diǎn),且|AB|=6
3

(1)求曲線E的方程;
(2)求直線l的方程;
(3)問:曲線E上是否存在點(diǎn)C,使
OA
+
OB
-m
OC
=
0
(O為坐標(biāo)原點(diǎn)),若存在,則求出m的值和△ABC的面積S;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點(diǎn)(0,1)的直線,使它與拋物線y2=2x僅有一個(gè)交點(diǎn).滿足條件的直線為:
x=0,或 y=1,或 y=
1
2
x+1
x=0,或 y=1,或 y=
1
2
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定長等于2
6
的線段AB的兩個(gè)端點(diǎn)分別在直線y=
6
2
x
y=-
6
2
x
上滑動(dòng),線段AB中點(diǎn)M的軌跡為C;
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點(diǎn)(0,1)的直線l與軌跡C交于P,Q兩點(diǎn),問:在y軸上是否存在定點(diǎn)T,使得不論l如何轉(zhuǎn)動(dòng),
TP
TQ
為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案