(本小題滿分14分)
已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求
面積的最大值.
(1)  (2)

試題分析:解:(1)設(shè)橢圓的半焦距為,依題意
,所以所求橢圓方程為:.                       …………………4分
(2)設(shè),
當(dāng)軸時(shí),                                    …………………6分
當(dāng)軸不垂直時(shí),設(shè)直線的方程為
由已知,得.                          …………………8分
代入橢圓方程,整理得
,


.
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
當(dāng)時(shí),,綜上所述                   …………………12分
所以面積的最大值為           …………………14分
點(diǎn)評:解決該試題的關(guān)鍵是對于第一問的橢圓方程的準(zhǔn)確求解,同時(shí)能聯(lián)立方程組,結(jié)合韋達(dá)定理表示出弦長,同時(shí)來得到三角形面積的最值的求解,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)P(0,-2)的雙曲線C的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則雙曲線C的標(biāo)準(zhǔn)方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的一條漸近線經(jīng)過點(diǎn),則該雙曲線的離心率為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

我們把離心率為黃金比的橢圓稱為“優(yōu)美橢圓”.設(shè) 為“優(yōu)美橢圓”,F(xiàn)、A分別是左焦點(diǎn)和右頂點(diǎn),B是短軸的一個(gè)端點(diǎn),則 (  )
A.60° B.75°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個(gè)端點(diǎn),且滿足=0,點(diǎn)N( 0,3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),;問A、B兩點(diǎn)能否關(guān)于過點(diǎn)P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
拋物線頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)與橢圓的右焦點(diǎn)重合,過點(diǎn)斜率為的直線與拋物線交于兩點(diǎn).

(Ⅰ)求拋物線的方程;
(Ⅱ)求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

中 ,,以點(diǎn)為一個(gè)焦點(diǎn)作一個(gè)橢圓,使這個(gè)橢圓
的另一焦點(diǎn)在邊上,且這個(gè)橢圓過兩點(diǎn),則這個(gè)橢圓的焦距長為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分) 如圖,已知橢圓的兩個(gè)焦點(diǎn)分別為,斜率為k的直線l過左焦點(diǎn)F1且與橢圓的交點(diǎn)為A,B與y軸交點(diǎn)為C,又B為線段CF1的中點(diǎn),若,求橢圓離心率e的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線上有一點(diǎn)P到左準(zhǔn)線的距離為,則P到右焦點(diǎn)的距離為        。

查看答案和解析>>

同步練習(xí)冊答案