已知拋物線y=
1
4
x2,焦點為F.
(1)若直線y=-x+4交拋物線于A、B兩點,求證:OA⊥OB;
(2)若直線L過F交拋物線于M、N兩點,求證∠MON為鈍角.
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)直線方程與拋物線方程聯(lián)立,設(shè)A(x1,y1),B(x2,y2),證明
OA
OB
=x1x2+y1y2=0即可;
(2)設(shè)直線L:y=kx+1,與拋物線方程聯(lián)立,證明
OM
ON
<0即可.
解答: 證明:(1)設(shè)A(x1,y1),B(x2,y2),則
直線與拋物線方程聯(lián)立,消去y得x2-4x-16=0,
∴x1x2=-16,∴y1y2=16,
OA
OB
=x1x2+y1y2=0,
OA
OB
,
∴OA⊥OB;
(2)由題意,F(xiàn)(0,1),設(shè)直線L:y=kx+1,
與拋物線方程聯(lián)立,消去y得x2-4kx-4=0,
設(shè)M(x3,y3),N(x4,y4),
∴x3x4=-4,∴y3y4=1,
OM
ON
=x3x4+y3y4=-4+1=-3<0,
∴∠MON為鈍角.
點評:考查直線與拋物線的位置關(guān)系,考查韋達定理、向量知識的運用,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩圓C1:(x-
2
2+y2=1和C2:x2+y2+2
2
x=0的圓心分別為C1、C2,G1、G2分別是圓C1、C2上的點,M是動點,且|MC1|+|MC2|=4
(1)求動點M的軌跡L的方程;
(2)設(shè)軌跡H與y軸的一個交點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l的對稱點落在軌跡L上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A的圓心在直線L1:x+y-3=0上且與直線L2:3x+4y-35=0相切于點B,圓A在直線L3:3x+4y+10=0上截得的弦長CD為6,求圓A的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點F(0,1)和直線l:y=-1,過點F且與直線l相切的動圓圓心為點M,記點M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若點A的坐標為(2,1),直線l1:y=kx+1(k∈R,且k≠0)與曲線E相交于B,C兩點,直線AB,AC分別交直線l于點S,T.試判斷以線段ST為直徑的圓是否恒過兩個定點?若是,求這兩個定點的坐標;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的兩個焦點分別為F1(-
3
,0),F(xiàn)2
3
,0),短軸的兩個端點分別為B1,B2;且△F1B1B2為等腰直角三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C交于點M,N,且OM⊥ON,試證明直線l與圓x2+y2=2相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某選手欲參加“開心辭典”節(jié)目,但必須通過一項包含5道試題的達標測試.測試規(guī)定:對于提供的5道試題,參加者答對3道題即可通過.為節(jié)省測試時間,同時規(guī)定:若答題不足5道已通過,則停止答題,若答題不足5道,但已確定不能通過,也停止答題.假設(shè)該選手答對每道題的概率均為
2
3
,且各題對錯互不影響.
(Ⅰ)求該選手恰好答完4道題就通過點的概率;
(Ⅱ)設(shè)在一次測試中該選手答題數(shù)位ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P是圓M:(x+1)2+y2=16上一點,點F(1,0),線段PF的垂直平分線和圓M的半徑MP相交于點Q.
(1)當(dāng)點P在圓上運動時,求點Q的軌跡C的方程;
(2)若直線x=my-1交軌跡C于A、B兩點,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
lim
n→∞
1
n
[sin
π
n
+sin
n
+…+sin
(n-1)π
n
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

私家車具有申請報廢制度.一車主購買車輛時花費15萬,每年的保險費、路橋費、汽油費等約1.5萬元,每年的維修費是一個公差為3000元的等差數(shù)列,第一年維修費為3000元,則該車主申請車輛報廢的最佳年限(使用多少年的年平均費用最少)是
 
年.

查看答案和解析>>

同步練習(xí)冊答案