一個(gè)四棱錐的三視圖如圖所示,其中主視圖是腰長(zhǎng)為1的等腰直角三角形,則這個(gè)幾何體的體積是( )

A.
B.1
C.
D.2
【答案】分析:由三視圖知幾何體是一個(gè)四棱錐,四棱錐的底面是一個(gè)直角梯形,上底是1,下底是2,梯形的高是四棱錐的高是1×,根據(jù)四棱錐的體積公式得到結(jié)果.
解答:解:由三視圖知幾何體是一個(gè)四棱錐,
四棱錐的底面是一個(gè)直角梯形,
上底是1,下底是2,梯形的高是
四棱錐的高是1×
∴四棱錐的體積是=
故選A.
點(diǎn)評(píng):本題考查由三視圖還原幾何體的圖形和求幾何體的體積,解題的關(guān)鍵是看出幾何體的形狀和各個(gè)部分的大小,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)一個(gè)四棱錐的三視圖如圖所示,其中主視圖是腰長(zhǎng)為1的等腰直角三角形,則這個(gè)幾何體的體積是( 。
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)四棱錐的三視圖如圖所示.

(1)求這個(gè)四棱錐的全面積及體積;
(2)求證:PA⊥BD;
(3)在線段PD上是否存在一點(diǎn)Q,使二面角Q-AC-D的平面角為30°?若存在,求
|DQ||DP|
的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)一模)已知一個(gè)四棱錐的三視圖如圖所示,則該四棱錐的體積是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)四棱錐的三視圖如圖所示,E為側(cè)棱PC上一動(dòng)點(diǎn).
(1)畫出該四棱錐的直觀圖,并指出幾何體的主要特征(高、底等).
(2)點(diǎn)E在何處時(shí),PA∥平面EBD,并求出此時(shí)點(diǎn)A到平面EBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)四棱錐的三視圖如圖所示,其中Rt△PDA≌Rt△PBA,且PD=AD=2,E,F(xiàn),G分別為PA、PD、CD的中點(diǎn)
(1)求證:PB∥平面EFG;
(2)求直線PA與平面EFG所成角的大。
(3)在直線CD上是否存在一點(diǎn)Q,使二面角Q-EF-D的大小為60°?若存在,求出CQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案