已知a是實數(shù),函數(shù)f(x)=x2-2(a+2)x+a2
(1)若關(guān)于x的方程f(x)=1有兩個正根,求a的取值范圍;
(2)若關(guān)于x的方程f(x)=1有兩個都大于2的根,試求a的取值范圍.
考點:一元二次方程的根的分布與系數(shù)的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)關(guān)于x的方程即x2-2(a+2)x+a2-1=0,由題意可得△≥0,且x1+x2>0,且且對稱軸x=a+2>0,且h(0)=a2-1>0,由此求得a的范圍.
(2)關(guān)于x的方程即g(x)=x2-2(a+2)x+a2-1=0,由題意可得△≥0,對稱軸x=a+2>2,g(2)=a2-4a-5>0,由此求得a的范圍.
解答: 解:(1)關(guān)于x的方程f(x)=1即x2-2(a+2)x+a2-1=0.
令h(x)=x2-2(a+2)x+a2-1,
由題意可得△=4(a+2)2-4(a2-1)≥0,且對稱軸x=a+2>0,且h(0)=a2-1>0.
解得-
5
4
<a<-1,或 a>1,
即a的范圍是{a|-
5
4
<a<-1,或a>1}.
(2)關(guān)于x的方程f(x)=1即x2-2(a+2)x+a2-1=0,
令g(x)=x2-2(a+2)x+a2-1,
由題意可得△=4(a+2)2-4(a2-1)≥0,對稱軸x=a+2>2,g(2)=a2-4a-5>0,
解得 a≥5.
點評:本題主要考查了一元二次方程的根的分布與系數(shù)的關(guān)系,韋達定理,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項公式;
(2)若a2,a3分別為等差數(shù)列{bn}的第2項和第4項,試求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出定義域為{x|-3≤x≤8,且x≠5},值域為{y|-1≤y≤2,y≠0}的一個函數(shù)的圖象.如果平面直角坐標系中點P(x,y)的坐標滿足-3≤x≤8,-1≤y≤2,那么其中哪些點不能在圖象上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,△ABC是邊長為2的正三角形,平面SAC⊥平面ABC,SA=SC=
3
,E,F(xiàn)分別為AB,SB的中點.
(1)證明:AC⊥SB;
(2)求銳二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx-
m-1
x
-lnx,g(x)=
1
sinθ•x
+lnx在[1,+∞)上為增函數(shù),且θ∈(0,π),求解下列各題:
(1)當m=1時,求函數(shù)y=f(x)的極小值;
(2)求θ的取值范圍;
(3)若h(x)=f(x)-g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:|1-
x-1
3
|≤2;q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四棱錐P-ABCD中,PA=2,直線PA與平面ABCD所成的角為60°.
(1)求正四棱錐P-ABCD的表面積S和體積V.
(2)求二面角P-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)φ(x)=
1,  x≥0
-1, x<0
,f(x)=x2-2x(x2-a)φ(x2-a).
(1)解關(guān)于a的不等式f(1)≤f(0);
(2)已知函數(shù)f(x)在x∈[0,1]上的最小值為f(1),求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)z1=1+i,z2=1-i,則
z1
z2
的模為
 

查看答案和解析>>

同步練習(xí)冊答案