:如圖所示,ACAB分別是圓O的切線,B、C為切點(diǎn),OC = 3,AB = 4,延長(zhǎng)OAD點(diǎn),則△ABD的面積是___________.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知△ABC為等邊三角形,AB=2.設(shè)點(diǎn)P,Q滿足
AP
AB
,
AQ
=(1-λ)
AC
,λ∈R.若
BQ
CP
=-
3
2
,則λ=(  )
A.
1
2
B.
2
2
C.
10
2
D.
-3±
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程是:  .
(Ⅰ)求曲線的直角坐標(biāo)方程,直線的普通方程;
(Ⅱ)將曲線橫坐標(biāo)縮短為原來的,再向左平移1個(gè)單位,得到曲線曲線,求曲線上的點(diǎn)到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

經(jīng)過圓的圓心C,且與直線垂直的直線方程是 (   )
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為F1、F2,短軸端點(diǎn)分別為A、B,且四邊形F1AF2B是邊長(zhǎng)為2的正方形
(I)求橢圓的方程;
(II)若C、D分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿足,連結(jié)CM交橢圓于P,證明為定值(O為坐標(biāo)原點(diǎn));
(III)在(II)的條件下,試問在x軸上是否存在異于點(diǎn)C的定點(diǎn)Q,使以線段MP為直徑的圓恒過直線DP、MQ的交點(diǎn),若存在,求出Q的坐標(biāo),若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知曲線上任意一點(diǎn)到點(diǎn)的距離比它到直線的距離小1.
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線相交于兩點(diǎn),設(shè)直線的斜率分別為
求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為,離心率為
(1)求橢圓的方程;
(2)過點(diǎn)作直線、兩點(diǎn),試問:在軸上是否存在一個(gè)定點(diǎn),使為定值?若存在,求出這個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)A 與圓相切的直線方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從雙曲線=1的左焦點(diǎn)F引圓x2 + y2 = 3的切線FP交雙曲線右支于點(diǎn)P,T為切點(diǎn),M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則| MO | – | MT | 等于              。

查看答案和解析>>

同步練習(xí)冊(cè)答案