P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右支上一點,F(xiàn)1、F2分別是左、右焦點,且焦距為2c,則△PF1F2的內(nèi)切圓圓心的橫坐標(biāo)為( 。
A、aB、bC、cD、a+b-c
考點:直線與圓錐曲線的綜合問題
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:將內(nèi)切圓的圓心坐標(biāo)進行轉(zhuǎn)化成圓與橫軸切點Q的橫坐標(biāo),PF1-PF2=F1Q-F2Q=2a,F(xiàn)1Q+F2Q=F1F2解出OQ.
解答: 解:如圖設(shè)切點分別為M,N,Q,
則△PF1F2的內(nèi)切圓的圓心的橫坐標(biāo)與Q橫坐標(biāo)相同.
由雙曲線的定義,PF1-PF2=2a.
由圓的切線性質(zhì)PF1-PF2=FIM-F2N=F1Q-F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F2Q=c-a,OQ=a,Q橫坐標(biāo)為a.
故選A.
點評:本題巧妙地借助于圓的切線的性質(zhì),強調(diào)了雙曲線的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖框圖輸出的S為( 。
A、15B、17C、26D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱臺的一條側(cè)棱所在的直線與不含這條側(cè)棱的側(cè)面所在平面的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知拋物線x2=4y,過定點M0(0,m)(m>0)的直線l交拋物線于A,B兩點.
(1)分別過A,B作拋物線的兩條切線,A,B為切點,求證:這兩條切線的交點P(x0,y0)在定直線y=-m上;
(2)當(dāng)m>2時,在拋物線上存在不同的兩點P、Q關(guān)于直線l對稱,弦長|PQ|是否存在最大值?若存在,求其最大值(用m表示),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個數(shù)列的通項公式為f(n),n∈N*,若7f(n)=f(n-1)(n≥2)且f(1)=3,則
lim
n→∞
[f(1)+f(2)+…+f(n)]等于( 。
A、
7
2
B、
3
7
C、-7
D、-
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α⊥平面β,交線為AB,C∈α,D∈β,AB=AC=BC=4
3
,E為BC的中點,AC⊥BD,BD=8.
①求證:BD⊥平面α;
②求證:平面AED⊥平面BCD;
③求二面角B-AC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形OABC中,邊長AC=BC,OA=3,OB=1,則向量
AB
OC
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線經(jīng)過坐標(biāo)原點,并且兩條漸近線與以點A(0,
2
)為圓心、1為半徑的圓相切,雙曲線C的一個焦點與點A關(guān)于直線y=x對稱.
(1)求雙曲線C的漸近線和雙曲線的方程;
(2)設(shè)直線y=mx+1與雙曲線C的左支交于P、Q兩點,另一直線l經(jīng)過M(-2,0)及線段PQ的中點N,求直線l在y軸的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2
3
cos2x+2sinxcosx-
3
,求:
(1)函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(
α
2
-
π
6
)-f(
α
2
+
π
12
)=2
2
,且α∈(
π
2
,π)
,求α的值.

查看答案和解析>>

同步練習(xí)冊答案