已知數(shù)列{an}和{bn}都是等差數(shù)列,a1=25,b1=75且a100+b100=100,則數(shù)列{an+bn}的前10項(xiàng)和是( �。�
分析:由等差數(shù)列的性質(zhì)可知,數(shù)列{an+bn}為等差數(shù)列,由a1+b1=100,a100+b100=100,可知an+bn的各項(xiàng)都為100,從而可求
解答:解:由等差數(shù)列的性質(zhì)可知,數(shù)列{an+bn}為等差數(shù)列
∵a1+b1=100,a100+b100=100
∴an+bn的各項(xiàng)都為100
∴前10項(xiàng)和為100×10=1000
故選:C
點(diǎn)評(píng):本題主要考查了等差數(shù)列 的性質(zhì):若數(shù)列{an},{bn}分別為公差d1,d2的等差數(shù)列,則{an+bn}也為等差數(shù)列,且公差為d1+d2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=4,a2=b2=2,a3=1,且數(shù)列{an+1-an}是等差數(shù)列,n∈N*,
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)問是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ為實(shí)數(shù),且λ≠-18,n為正整數(shù).
(Ⅰ)求證:{bn}是等比數(shù)列;
(Ⅱ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�