【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的直角坐標(biāo)方程并指出其形狀;
(2)設(shè)是曲線(xiàn)上的動(dòng)點(diǎn),求的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)直接根據(jù)極坐標(biāo)和直角坐標(biāo)方程互化公式求解得到其直角坐標(biāo)方程,然后,再將其化為標(biāo)準(zhǔn)方程即可判斷其形狀;(2)依據(jù)曲線(xiàn)的參數(shù)方程,可以設(shè)該點(diǎn)的三角形式,然后,借助于三角函數(shù)的有界性求最值.
試題解析:(1)由ρ2-4ρcos+7=0可得ρ2-4ρcosθ-4ρsinθ+7=0,化為直角坐標(biāo)方程得x2+y2-4x-4y+7=0,即(x-2)2+(y-2)2=1,它表示以(2,2)為圓心,以1為半徑的圓.
(2)由題意可設(shè)x=2+cosθ,y=2+sinθ,則t=(x+1)(y+1)=(3+cosθ)(3+sinθ)=9+3(sinθ+cosθ)+sinθcosθ.
令sinθ+cosθ=m,平方可得1+2sinθcosθ=m2,
所以sinθcosθ=,t=9+3m+=m2+3m+(-≤m≤).由二次函數(shù)的圖象可知t的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射手射擊所得環(huán)數(shù)ξ的分布列如下:
ξ | 7 | 8 | 9 | 10 |
P | x | 0.1 | 0.3 | y |
已知ξ的數(shù)學(xué)期望E(ξ)=8.9,則y的值為( ).
A. 0.2 B. 0.4 C. 0.6 D. 0.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的公差不為零,首項(xiàng)a1=1,a2是a1和a5的等比中項(xiàng),則數(shù)列的前10項(xiàng)之和是( )
A. 90 B. 100 C. 145 D. 190
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,0,2),B(1,-3,1),點(diǎn)M在z軸上且到A、B兩點(diǎn)的距離相等,則點(diǎn)M的坐標(biāo)為
A. (-3,0,0) B. (0,-3,0) C. (0,0,3) D. (0,0,-3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于①“一定發(fā)生的”,②“很可能發(fā)生的”,③“可能發(fā)生的”,④“不可能發(fā)生的”,⑤“不太可能發(fā)生的”這5種生活現(xiàn)象,發(fā)生的概率由小到大排列為(填序號(hào))_________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處取得極值,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)討論函數(shù)的單調(diào)性;
(3)設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓交于兩點(diǎn)的直線(xiàn):,使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí)
成立.
(Ⅰ)判斷f(x)在[-1,1]上的單調(diào)性,并證明;
(Ⅱ)解不等式:;
(Ⅲ)若f(x)≤m2-2am+1對(duì)所有的a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了分析全市9 800名初中畢業(yè)生的數(shù)學(xué)考試成績(jī),抽取50本試卷,每本都是30份,則樣本容量是( )
A. 30 B. 50 C. 1 500 D. 9 800
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com