【題目】設全集U={1,2,3,4,5},M={1,2,4},N={2,4,5},則(UM)∩(UN)等于(
A.{4}
B.{1,3}
C.{2,5}
D.{3}

【答案】D
【解析】解:∵全集U={1,2,3,4,5},M={1,2,4},N={2,4,5},
∴M∪N={1,2,4,5},
U(M∪N)={3},
則(UM)∩(UN)=U(M∪N)={3},
故選D
【考點精析】關于本題考查的交、并、補集的混合運算,需要了解求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】用數(shù)學歸納法證明1+2+3+…+(2n+1)=(n+1)(2n+1)時,從n=k到n=k+1,左邊需增添的代數(shù)式是(
A.2k+2
B.2k+3
C.2k+1
D.(2k+2)+(2k+3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意實數(shù)a,b,c,d,命題:
①若a>b,c≠0,則ac>bc;
②若a>b,則ac2>bc2;
③若ac2>bc2 , 則a>b.
其中真命題的個數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設m,n是不同的直線,α,β是不同的平面,下列四個命題為真命題的是( ) ①若m⊥α,n⊥m,則n∥α;
②若α∥β,n⊥α,m∥β,則n⊥m;
③若m∥α,n⊥β,m⊥n,則α⊥β;
④若m∥α,n⊥β,m∥n,則α⊥β.
A.②③
B.③④
C.②④
D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個實驗中,測得變量x和變量y的幾組數(shù)據(jù),如表:

x

0.50

0.99

2.01

3.98

y

﹣0.99

0.01

0.98

2.00

則對x,y最適合的擬合函數(shù)是(
A.y=2x
B.y=x2﹣1
C.y=log2x
D.y=2x﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)為定義在R上的奇函數(shù).且滿足f(3)=6,當x>0時f′(x)>2,則不等式f(x)﹣2x<0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)為奇函數(shù)的是(
A.y=x+1
B.y=ex
C.y=x2+x
D.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列{an}中,若a22+2a2a8+a6a10=16,則a4a6=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司每月最多生產100臺警報系統(tǒng)裝置,生產x臺(x∈N*)的總收入為30x﹣0.2x2(單位:萬元).每月投入的固定成本(包括機械檢修、工人工資等)為40萬元,此外,每生產一臺還需材料成本5萬元.在經濟學中,常常利用每月利潤函數(shù)P(x)的邊際利潤函數(shù)MP(x)來研究何時獲得最大利潤,其中MP(x)=P(x+1)﹣P(x). (Ⅰ)求利潤函數(shù)P(x)及其邊際利潤函數(shù)MP(x);
(Ⅱ)利用邊際利潤函數(shù)MP(x)研究,該公司每月生產多少臺警報系統(tǒng)裝置,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習冊答案