精英家教網 > 高中數學 > 題目詳情
已知f(x)=
4•2010x+2
2010x+1
+xcosx(-1≤x≤1)
,設函數f(x)的最大值是M,最小值是N,則( 。
分析:將此函數看做兩個函數的和,其中前一個為單調增函數,后一個為奇函數,從而函數的最大值與最小值之和為前一個函數的最值之和,代入解析式利用指數運算性質化簡求值即可
解答:解:∵g(x)=
4•2010x+2
2010x+1
=
4•(2010x+1)-2
2010x+1
=4-
2
2010x+1
,由復合函數單調性的判斷方法,知此函數在R上為增函數
又∵y=xcosx為R上的奇函數,其最大值加最小值為0
∴M+N=g(-1)+g(1)=8-(
2
2010-1+1
+
2
20101+1
)=8-(
2×2010
2010 +1
+
2
2010 +1
)=8-(
2×2011
2011 
)=6
故選C
點評:本題考查了函數的單調性和奇偶性的應用,利用單調性求函數最值,指數運算的性質
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=
4+
1
x2
,數列{an}的前n項和為Sn,點Pn(an,
1
an+1
)(n∈N*)在曲線y=f(x)上,且a1=1,an>0.
(1)求數列{an}的通項公式an
(2)數列{bn}的首項b1=1,前n項和為Tn,且
Tn+1
an2
=
Tn
an+12
+16n2-8n-3
,求數列{bn}的通項公式bn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
4-tx
(t>0)
的定義域為A,不等式x2-4x-12<0的解集為B.記p:x∈A,q:x∈B
(1)當t=2時,試判斷p是q的什么條件?
(2)若p是q的必要不充分條件,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知 ①f(x)=
4-x2
|x+3|-3
,②f(x)=(x-1)
1+x
1-x
,③f(x)=ex-e-x,④f(x)=2x,其中奇函數的個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=-
4+
1
x2
,數列{an}的前n項和為Sn,點Pn(an,-
1
an+1
)
在曲線y=f(x)上(n∈N*),且a1=1,an>0.
(1)求數列{an}的通項公式;
(2)數列{bn]的前n項和為Tn,且滿足
Tn+1
an2
=
Tn
an+12
+16n2-8n-3
,b1=1,求證:數列{
Tn
4n-3
}
是等差數列,并求數列{bn]的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
4-x
+
1
x+3
的定義域為A,B={x|1-a<x<1+a}
(1)求集合A.
(2)若B⊆A,求a的取值范圍.

查看答案和解析>>

同步練習冊答案