已知橢圓的兩焦點為F1(-2,0),F(xiàn)2(2,0),P為橢圓上的一點,且|F1F2|是|PF1|與|PF2|的等差中項,該橢圓的方程是( 。
分析:根據(jù)|F1F2|是|PF1|與|PF2|的等差中項,且|F1F2|=2c,|PF1|+|PF2|=2a,就可求出a,b的值,再判斷焦點所在坐標(biāo)軸,就可得到橢圓方程.
解答:解:∵|F1F2|是|PF1|與|PF2|的等差中項,∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∵橢圓的兩焦點為F1(-2,0),F(xiàn)2(2,0),∴c=2,∴a=4,b2=a2-c2=12
∵橢圓的焦點在x軸上,
∴橢圓方程為
x2
16
+
y2
12
=1
故選B
點評:本題主要考查了應(yīng)用橢圓的定義以及等差中項的概念求橢圓方程,關(guān)鍵是求a,b的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年廣東省惠州一中高三(上)數(shù)學(xué)寒假作業(yè)5(理科)(解析版) 題型:選擇題

已知橢圓的左焦點為F,A(-a,0),B(0,b)為橢圓的兩個頂點,若F到AB的距離等于,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏銀川一中高三(下)第六次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓的右焦點為F(2,0),M為橢圓的上頂點,O為坐標(biāo)原點,且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過定點().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年高二(上)周考數(shù)學(xué)試卷(10)(解析版) 題型:選擇題

已知橢圓的左焦點為F,A(-a,0),B(0,b)為橢圓的兩個頂點,若F到AB的距離等于,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年內(nèi)蒙古包頭市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知橢圓的右焦點為F(2,0),M為橢圓的上頂點,O為坐標(biāo)原點,且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過定點().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第61課時):第八章 圓錐曲線方程-橢圓(解析版) 題型:選擇題

已知橢圓的左焦點為F,A(-a,0),B(0,b)為橢圓的兩個頂點,若F到AB的距離等于,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案