【題目】若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)與函數(shù),為“同族函數(shù)”.下面函數(shù)解析式中能夠被用來構(gòu)造“同族函數(shù)”的是(

A.B.C.

D.E.

【答案】ABD

【解析】

由題意可知定義域不同且解析式和值域相同,得函數(shù)必為不單調(diào)函數(shù),舉出滿足條件的例子構(gòu)造出同族函數(shù)即可.

對于A,,當(dāng)定義域分別為時(shí),值域均為,所以為同族函數(shù),所以A正確;

對于B,,當(dāng)定義域分別為時(shí),值域均為,所以為同族函數(shù),所以B正確;

對于C, 在定義域內(nèi),函數(shù)圖像在第一象限內(nèi)單調(diào)遞減,在第三象限內(nèi)單調(diào)遞減,不滿足定義域不同時(shí),值域相同,所以C錯(cuò)誤;

對于D,定義域?yàn)?/span>,當(dāng)定義域分別為時(shí),值域均為,所以D正確

對于E,定義域?yàn)?/span>R,且函數(shù)在R上單調(diào)遞增,所以不滿足定義域不同時(shí),值域相同,所以E錯(cuò)誤

綜上,故選ABD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b為何值時(shí),ax2+bx+30的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種子培育基地新研發(fā)了兩種型號的種子,從中選出90粒進(jìn)行發(fā)芽試驗(yàn),并根據(jù)結(jié)果對種子進(jìn)行改良.將試驗(yàn)結(jié)果匯總整理繪制成如下列聯(lián)表:

(1)列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為發(fā)芽和種子型號有關(guān);

(2)若按照分層抽樣的方式,從不發(fā)芽的種子中任意抽取20粒作為研究小樣本,并從這20粒研究小樣本中任意取出3粒種子,設(shè)取出的型號的種子數(shù)為,求的分布列與期望.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2ax2+(a+4)x+lnx.
(1)若f(x)在x= 處的切線與直線4x+y=0平行,求a的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0 , 證明f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>,且對任意,有,且當(dāng)時(shí),

(Ⅰ)證明是奇函數(shù);

(Ⅱ)證明上是減函數(shù);

(III)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.函數(shù).

(1)請寫出函數(shù)與函數(shù)的單調(diào)區(qū)間;(只寫結(jié)論,不需證明

(2)求函數(shù)的最大值和最小值;

(3)討論方程實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分16某批發(fā)公司批發(fā)某商品,每件商品進(jìn)價(jià)80元,批發(fā)價(jià)120元,該批發(fā)商為鼓勵(lì)經(jīng)銷商批發(fā),決定當(dāng)一次批發(fā)量超過100個(gè)時(shí),每多批發(fā)一個(gè),批發(fā)的全部商品的單價(jià)就降低0.04元,但最低批發(fā)價(jià)不能低于102元.

1當(dāng)一次訂購量為多少個(gè)時(shí),每件商品的實(shí)際批發(fā)價(jià)為102元?

2當(dāng)一次訂購量為個(gè), 每件商品的實(shí)際批發(fā)價(jià)為元,寫出函數(shù)的表達(dá)式;

3根據(jù)市場調(diào)查發(fā)現(xiàn),經(jīng)銷商一次最大定購量為個(gè),則當(dāng)經(jīng)銷商一次批發(fā)多少個(gè)零件時(shí),該批發(fā)公司可獲得最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此試驗(yàn)重復(fù)n輪,第n輪的點(diǎn)數(shù)分別記為xn , yn , 如果點(diǎn)數(shù)滿足xn ,則認(rèn)為第n輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束.
(Ⅰ)求第一輪闖關(guān)成功的概率;
(Ⅱ)如果第i輪闖關(guān)成功所獲的獎金數(shù)f(i)=10000× (單位:元),求某人闖關(guān)獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量X,求x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某學(xué)校準(zhǔn)備修建一個(gè)面積為2400平方米的矩形活動場地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開,使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費(fèi)用均為每米500元,設(shè)圍墻(包括EF)的修建總費(fèi)用為y元.

(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;

(2)當(dāng)x為何值時(shí),圍墻(包括EF)的修建總費(fèi)用y最?并求出y的最小值.

查看答案和解析>>

同步練習(xí)冊答案