已知f(x)是定義在(-∞,+∞)上的不恒為零的函數(shù),且對定義域內的任意x、y,f(x)都滿足f(xy)=yf(x)+xf(y).

(1)求f(1)、f(-1)的值;

(2)判斷f(x)的奇偶性,并說明理由.

思路分析:(1)利用賦值法,令x=y=1得f(1)的值,令x=y=-1,得f(-1)的值;(2)利用定義法證明f(x)是奇函數(shù),要借助于賦值法得f(-x)=-f(x).

解:(1)∵f(x)對任意x、y都有f(x·y)=yf(x)+xf(y),

∴令x=y=1時,有f(1·1)=1·f(1)+1·f(1).

∴f(1)=0.

∴令x=y=-1時,有f[(-1)·(-1)]=(-1)·f(-1)+(-1)·f(-1).

∴f(-1)=0.

(2)∵f(x)對任意x,y都有f(x·y)=yf(x)+xf(y),

∴令y=-1,有f(-x)=-f(x)+xf(-1).

將f(-1)=0代入,得f(-x)=-f(x),

∴函數(shù)f(x)是(-∞,+∞)上的奇函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列結論中正確的是
①②③
①②③

①函數(shù)y=f(x)是定義在R上的偶函數(shù),且f(x+1)=-f(x),則函數(shù)y=f(x)的圖象關于直線x=1對稱;
②已知ξ~N(16,σ2),若P(ξ>17)=0.35,則P(15<ξ<16)=0.15;
已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上是增函數(shù).設a=f(ln
1
3
),b=f(log43),
c=f(0.4-1.2),則c<a<b;

④線性相關系數(shù)r的絕對值越接近于1,表明兩個變量線性相關程度越弱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在實數(shù)集R上的函數(shù),它的反函數(shù)為f-1(x),若y=f-1(x+1)與y=f(x+1)互為反函數(shù),且f(1)=1,則f(2)的值為

A.2                  B.1                   C.0                   D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意的a,b∈R,滿足f(a·b)=af(b)+bf(a),f(2)=2,a=(n∈N*),b=(n∈N*);考查下列結論:

f(0)=f(1);②f(x)為偶函數(shù);③數(shù)列{a}為等比數(shù)列;④{b}為等差數(shù)列.

其中正確的是               .

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆廣東省高一第一次階段考試數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知f(x)是定義在( 0,+∞)上的增函數(shù),

且f() = f(x)-f(y)  

(1)求f(1)的值;

(2)若f(6)= 1,解不等式 f( x+3 )-f() <2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年黑龍江省高一上學期期末考試數(shù)學試卷 題型:填空題

已知f (x)是定義在上的奇函數(shù),當時,f (x)的圖象如圖所示,那么f (x)的值域是                   

 

查看答案和解析>>

同步練習冊答案