已知變量x,y滿足,則z=3x+y的最大值是   
【答案】分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=3x+y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可.
解答:解:作圖
易知可行域為一個三角形,
其三個頂點為A(1,1),B(4,4),C(2,0),
驗證知在點B(4,4)時取得最大值,
當直線z=3x+y過點(4,4)時,z最大是16,
故答案為:16.
點評:本題考查的知識點是簡單線性規(guī)劃,畫出滿足條件的可行域及各角點的坐標是解答線性規(guī)劃類小題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足
2x-y≤0
x-3y+5≥0
x≥0
,則z=x-y+5的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
2x-y≤0
x-2y+3≥0
x≥0
,則目標函數(shù)z=x+y的最大值為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足
x-4y+3≤0
3x+5y≤25
x≥1
,設目標函數(shù)z=2x+y,若存在不同的三點(x,y)使目標函數(shù)z的值構成等比數(shù)列,則以下不可能成為公比的數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x、y滿足條件
x≥1
x-y≤0
x+2y-9≤0
則z=x+y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+y≤1
2x+y≤2
x≥0,y≥0
,則目標函數(shù)z=
1
2
x+y
的最大值為
1
1

查看答案和解析>>

同步練習冊答案